
The Traveling Salesman Problem

• We are given n cities 1, 2, . . . , n and integer distance dij

between any two cities i and j.

• Assume dij = dji for convenience.

• The traveling salesman problem (tsp) asks for the

total distance of the shortest tour of the cities.a

• The decision version tsp (d) asks if there is a tour with

a total distance at most B, where B is an input.b

aEach city is visited exactly once.
bBoth problems are extremely important. They are equally hard

(p. 399 and p. 501).

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 121



A Shortest Path
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A Nondeterministic Algorithm for tsp (d)
1: for i = 1, 2, . . . , n do

2: Guess xi ∈ { 1, 2, . . . , n }; {The ith city.}a
3: end for

4: {Verification:}
5: if x1, x2, . . . , xn are distinct and

∑n−1
i=1 dxi,xi+1 ≤ B then

6: “yes”;

7: else

8: “no”;

9: end if

aCan be made into a series of log2 n binary choices for each xi so

that the next-state count (2) is a constant, independent of input size.

Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.
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Analysis

• Suppose the input graph contains at least one tour of

the cities with a total distance at most B.

– Then there is a computation path for that tour.a

– And it leads to “yes.”

• Suppose the input graph contains no tour of the cities

with a total distance at most B.

– Then every computation path leads to “no.”

aIt does not mean the algorithm will follow that path. It just means

such a computation path (i.e., a sequence of nondeterministic choices)

exists.
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Remarks on the P
?
= NP Open Problema

• Many practical applications depend on answers to the

P
?
= NP question.

• Verification of password should be easy (so it is in NP).

– A computer should not take a long time to let a user

log in.

• A password system should be hard to crack (loosely

speaking, cracking it should not be in P).

• It took logicians 63 years to settle the Continuum

Hypothesis; how long will it take for this one?

aContributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on

September 27, 2011.
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Nondeterministic Space Complexity Classes

• Let L be a language.

• Then

L ∈ NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).

• NSPACE(f(n)) is a set of languages.

• As in the linear speedup theorem,a constant coefficients

do not matter.

aTheorem 5 (p. 92).
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Graph Reachability

• Let G(V,E) be a directed graph (digraph).

• reachability asks, given nodes a and b, does G

contain a path from a to b?

• Can be easily solved in polynomial time by breadth-first

search.

• How about its nondeterministic space complexity?
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The First Try: NSPACE(n log n)
1: Determine the number of nodes m; {Note m ≤ n.}
2: x1 := a; {Assume a �= b.}
3: for i = 2, 3, . . . ,m do

4: Guess xi ∈ { v1, v2, . . . , vm }; {The ith node.}
5: end for

6: for i = 2, 3, . . . ,m do

7: if (xi−1, xi) �∈ E then

8: “no”;

9: end if

10: if xi = b then

11: “yes”;

12: end if

13: end for

14: “no”;
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In Fact, reachability ∈ NSPACE(log n)
1: Determine the number of nodes m; {Note m ≤ n.}
2: x := a;

3: for i = 2, 3, . . . ,m do

4: Guess y ∈ { v1, v2, . . . , vm }; {The next node.}
5: if (x, y) �∈ E then

6: “no”;

7: end if

8: if y = b then

9: “yes”;

10: end if

11: x := y;

12: end for

13: “no”;
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Space Analysis

• Variables m, i, x, and y each require O(log n) bits.

• Testing (x, y) ∈ E is accomplished by consulting the

input string with counters of O(log n) bits long.

• Hence

reachability ∈ NSPACE(log n).

– reachability with more than one terminal node

also has the same complexity.

– In fact, reachability for undirected graphs is in

SPACE(logn).a

• reachability ∈ P (see, e.g., p. 235).

aReingold (2005).
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Undecidability
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He [Turing] invented

the idea of software, essentially[.]

It’s software that’s really

the important invention.

— Freeman Dyson (2015)
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Universal Turing Machinea

• A universal Turing machine U interprets the input

as the description of a TM M concatenated with the

description of an input to that machine, x.b

– Both M and x are over the alphabet of U .

• U simulates M on x so that

U(M ;x) = M(x).

• U is like a modern computer, which executes any valid

machine code, or a Java virtual machine, which executes

any valid bytecode.

aTuring (1936).
bSee pp. 57–58 of the textbook.
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The Halting Problem

• Undecidable problems are problems that have no

algorithms.

– Equivalently, they are languages that are not

recursive.

• We now define a concrete undecidable problem, the

halting problem:

H = {M ;x : M(x) �=↗}.
– Does M halt on input x?
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H Is Recursively Enumerable

• Use the universal TM U to simulate M on x.

• When M is about to halt, U enters a “yes” state.

• If M(x) diverges, so does U .

• This TM accepts H.
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H Is Not Recursivea

• Suppose H is recursive.

• Then there is a TM MH that decides H.

• Consider the program D(M) that calls MH :

1: if MH(M ;M) = “yes” then

2: ↗; {Writing an infinite loop is easy.}
3: else

4: “yes”;

5: end if

aTuring (1936).
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H Is Not Recursive (concluded)

• Consider D(D):

– D(D) =↗⇒ MH(D;D) = “yes” ⇒ D;D ∈ H ⇒
D(D) �=↗, a contradiction.

– D(D) = “yes” ⇒ MH(D;D) = “no” ⇒ D;D �∈ H ⇒
D(D) =↗, a contradiction.
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Comments

• Two levels of interpretations of M :a

– A sequence of 0s and 1s (data).

– An encoding of instructions (programs).

• There are no paradoxes with D(D).

– Concepts should be familiar to computer scientists.

– Feed a C compiler to a C compiler, a Lisp interpreter

to a Lisp interpreter, a sorting program to a sorting

program, etc.

aEckert & Mauchly (1943); von Neumann (1945); Turing (1946).
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It seemed unworthy of a grown man

to spend his time on such trivialities,

but what was I to do? [· · · ]
The whole of the rest of my life might be

consumed in looking at

that blank sheet of paper.

— Bertrand Russell (1872–1970),

Autobiography, Vol. I (1967)
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Self-Loop Paradoxesa

Russell’s Paradox (1901): Consider R = {A : A �∈ A}.
• If R ∈ R, then R �∈ R by definition.

• If R �∈ R, then R ∈ R also by definition.

• In either case, we have a “contradiction.”b

Eubulides: The Cretan says, “All Cretans are liars.”

Liar’s Paradox: “This sentence is false.”

aE.g., Quine (1966), The Ways of Paradox and Other Essays and

Hofstadter (1979), Gödel, Escher, Bach: An Eternal Golden Braid.
bGottlob Frege (1848–1925) to Bertrand Russell in 1902, “Your dis-

covery of the contradiction [. . .] has shaken the basis on which I intended

to build arithmetic.”
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Self-Loop Paradoxes (continued)

Hypochondriac: a patient with imaginary symptoms and

ailments.a

Sharon Stone in The Specialist (1994): “I’m not a

woman you can trust.”

Numbers 12:3, Old Testament: “Moses was the most

humble person in all the world [· · · ]” (attributed to

Moses).

aLike Gödel and Glenn Gould (1932–1982).
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Self-Loop Paradoxes (continued)

The Egyptian Book of the Dead: “ye live in me and I

would live in you.”

John 14:10, New Testament: “Don’t you believe that I

am in the Father, and that the Father is in me?”

John 17:21, New Testament: “just as you are in me and

I am in you.”
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Self-Loop Paradoxes (concluded)

Jerome K. Jerome, Three Men in a Boat (1887):

“How could I wake you, when you didn’t wake me?”

Winston Churchill (January 23, 1948): “For my part,

I consider that it will be found much better by all

parties to leave the past to history, especially as I

propose to write that history myself.”

Nicola Lacey, A Life of H. L. A. Hart (2004): “Top

Secret [MI5] Documents: Burn before Reading!”
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Bertrand Russella (1872–1970)

Karl Popper (1974), “per-

haps the greatest philoso-

pher since Kant.”

aNobel Prize in Literature (1950).
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Reductions in Proving Undecidability

• Suppose we are asked to prove that L is undecidable.

• Suppose L′ (such as H) is known to be undecidable.

• Find a computable transformation R (called

reductiona) from L′ to L such thatb

∀x {x ∈ L′ if and only if R(x) ∈ L }.

• Now we can answer “x ∈ L′?” for any x by answering

“R(x) ∈ L?” because it has the same answer.

• L′ is said to be reduced to L.

aPost (1944).
bContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.
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x yes/noR(x)
R algorithm 

for L

algorithm for L
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Reductions in Proving Undecidability (concluded)

• If L were decidable, “R(x) ∈ L?” becomes computable

and we have an algorithm to decide L′, a contradiction!

• So L must be undecidable.

Theorem 8 Suppose language L1 can be reduced to

language L2. If L1 is undecidable, then L2 is undecidable.
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Special Cases and Reduction

• Suppose L1 can be reduced to L2.

• As the reduction R maps members of L1 to a subset of

L2,
a we may say L1 is a “special case” of L2.

b

• That is one way to understand the use of the term

“reduction.”

aBecause R may not be onto.
bContributed by Ms. Mei-Chih Chang (D03922022) and Mr. Kai-Yuan

Hou (B99201038, R03922014) on October 13, 2015.
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Subsets and Decidability

• Suppose L1 is undecidable and L1 ⊆ L2.

• Is L2 undecidable?a

• It depends.

• When L2 = Σ∗, L2 is decidable: Just answer “yes.”

• If L2 − L1 is decidable, then L2 is undecidable.

– Clearly,

x ∈ L1 if and only if x ∈ L2 and x �∈ L2 − L1.

– Therefore, if L2 were decidable, then L1 would be.

aContributed by Ms. Mei-Chih Chang (D03922022) on October 13,

2015.
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The Universal Halting Problem

• The universal halting problem:

H∗ = {M : M halts on all inputs }.

• It is also called the totality problem.
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H∗ Is Not Recursivea

• We will reduce H to H∗.

• Given the question “M ;x ∈ H?”, construct the following

machine (this is the reduction):b

Mx(y) {M(x); }

• M halts on x if and only if Mx halts on all inputs.

• In other words, M ;x ∈ H if and only if Mx ∈ H∗.

• So if H∗ were recursive (recall the box for L on p. 146),

H would be recursive, a contradiction.

aKleene (1936).
bSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.

Mx ignores its input y; x is part of Mx’s code but not Mx’s input.
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More Undecidability

• {M ;x : there is a y such that M(x) = y }.
• {M ;x :

the computation M on input x uses all states of M }.

• L = {M ;x; y : M(x) = y }.
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Complements of Recursive Languages

The complement of L, denoted by L̄, is the language

Σ∗ − L.

Lemma 9 If L is recursive, then so is L̄.

• Let L be decided by M , which is deterministic.

• Swap the “yes” state and the “no” state of M .

• The new machine decides L̄.a

aRecall p. 109.
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Recursive and Recursively Enumerable Languages

Lemma 10 (Kleene’s theorem; Post, 1944) L is

recursive if and only if both L and L̄ are recursively

enumerable.

• Suppose both L and L̄ are recursively enumerable,

accepted by M and M̄ , respectively.

• Simulate M and M̄ in an interleaved fashion.

• If M accepts, then halt on state “yes” because x ∈ L.

• If M̄ accepts, then halt on state “no” because x �∈ L.a

• The other direction is trivial.

aEither M or M̄ (but not both) must accept the input and halt.
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A Very Useful Corollary and Its Consequences

Corollary 11 L is recursively enumerable but not recursive,

then L̄ is not recursively enumerable.

• Suppose L̄ is recursively enumerable.

• Then both L and L̄ are recursively enumerable.

• By Lemma 10 (p. 154), L is recursive, a contradiction.

Corollary 12 H̄ is not recursively enumerable.a

aRecall that H̄ = {M ;x : M(x) =↗}.
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are

recursively enumerable.

R: The set of all recursive languages.

• Note that coRE is not RE.

– coRE = {L : L ∈ RE } = {L : L ∈ RE }.
– RE = {L : L �∈ RE }.
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R, RE, and coRE (concluded)

• R = RE ∩ coRE (p. 154).

• There exist languages in RE but not in R and not in

coRE.

– Such as H (p. 135, p. 136, and p. 155).

• There are languages in coRE but not in RE.

– Such as H̄ (p. 155).

• There are languages in neither RE nor coRE.
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R
coRERE
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H Is Complete for REa

• Let L be any recursively enumerable language.

• Assume M accepts L.

• Clearly, one can decide whether x ∈ L by asking if

M : x ∈ H.

• Hence all recursively enumerable languages are reducible

to H!

• H is said to be RE-complete.

aPost (1944).

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 159



Notations

• Suppose M is a TM accepting L.

• Write L(M) = L.

– In particular, if M(x) =↗ for all x, then L(M) = ∅.
• If M(x) is never “yes” nor ↗ (as required by the

definition of acceptance), we also let L(M) = ∅.
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Nontrivial Properties of Sets in RE

• A property of the recursively enumerable languages can

be defined by the set C of all the recursively enumerable

languages that satisfy it.

– The property of finite recursively enumerable

languages is

{L : L = L(M) for a TM M , L is finite }.

• A property is trivial if C = RE or C = ∅.
– Answer to a trivial property is always “yes”or always

“no.”
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Nontrivial Properties of Sets in RE (concluded)

• Here is a trivial property (always yes): Does the TM

accept a recursively enumerable language?a

• A property is nontrivial if C �= RE and C �= ∅.
– In other words, answer to a nontrivial property is

“yes” for some TMs and “no” for others.

• Here is a nontrivial property: Does the TM accept an

empty language?b

• Up to now, all nontrivial properties (of recursively

enumerable languages) are undecidable (pp. 151–152).

• In fact, Rice’s theorem confirms that.
aOr, L(M) ∈ RE?
bOr, L(M) = ∅?
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Rice’s Theorem

Theorem 13 (Rice, 1956) Suppose C �= ∅ is a proper

subset of the set of all recursively enumerable languages.

Then the question “L(M) ∈ C?” is undecidable.

• Note that the input is a TM program M .

• Assume that ∅ �∈ C (otherwise, repeat the proof for the

class of all recursively enumerable languages not in C).
• Let L ∈ C be accepted by TM ML (recall that C �= ∅).
• Let MH accept the undecidable language H.

– MH exists (p. 135).
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The Proof (continued)

• Construct machine Mx(y):

if MH(x) = “yes” then ML(y) else ↗

• On the next page, we will prove that

L(Mx) ∈ C if and only if x ∈ H. (1)

– As a result, the halting problem is reduced to

deciding L(Mx) ∈ C.
– Hence L(Mx) ∈ C must be undecidable, and we are

done.
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The Proof (concluded)

• Suppose x ∈ H, i.e., MH(x) = “yes.”

– Mx(y) determines this, and it either accepts y or

never halts, depending on whether y ∈ L.

– Hence L(Mx) = L ∈ C.
• Suppose MH(x) =↗.

– Mx never halts.

– L(Mx) = ∅ �∈ C.
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Comments

• C must be arbitrary.

• The following Mx(y), though similar, will not work:

if ML(y) = “yes” then MH(x) else ↗.

• Rice’s theorem is about properties of the languages

accepted by Turing machines.

• It then says any nontrivial property is undecidable.

• Rice’s theorem is not about Turing machines

themselves, such as ”Does a TM contain 5 states?”
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Consequences of Rice’s Theorem

Corollary 14 The following properties of recursively

enumerative sets are undecidable.

• Emptiness.

• Finiteness.

• Recursiveness.

• Σ∗.

• Regularity.

• Context-freedom.
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Undecidability in Logic and Mathematics

• First-order logic is undecidable (answer to Hilbert’s

(1928) Entscheidungsproblem).a

• Natural numbers with addition and multiplication is

undecidable.b

• Rational numbers with addition and multiplication is

undecidable.c

aChurch (1936).
bRosser (1937).
cRobinson (1948).
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Undecidability in Logic and Mathematics (concluded)

• Natural numbers with addition and equality is decidable

and complete.a

• Elementary theory of groups is undecidable.b

aPresburger’s Master’s thesis (1928), his only work in logic. The

direction was suggested by Tarski. Mojz̄esz Presburger (1904–1943) died

in a concentration camp during World War II.
bTarski (1949).
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Julia Hall Bowman Robinson (1919–1985)
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Alfred Tarski (1901–1983)
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