Turing-Computable Functions

• Let \(f : (\Sigma - \{\sqcup\})^* \rightarrow \Sigma^* \).

 – Optimization problems, root finding problems, etc.

• Let \(M \) be a TM with alphabet \(\Sigma \).

• \(M \) computes \(f \) if for any string \(x \in (\Sigma - \{\sqcup\})^* \),

 \[M(x) = f(x) \].

• We call \(f \) a recursive function\(^a\) if such an \(M \) exists.

\(^a\)Kurt Gödel (1931, 1934).
Kurt Gödela (1906–1978)

Quine (1978), “this theorem [⋯] sealed his immortality.”

aThis photo was taken by Alfred Eisenstaedt (1898–1995).
Church’s Thesis or the Church-Turing Thesis

• What is computable is Turing-computable; TMs are algorithms.a

• No “intuitively computable” problems have been shown not to be Turing-computable, yet.b

aChurch (1935); Kleene (1953).
bQuantum computer of Manin (1980) and Feynman (1982) and DNA computer of Adleman (1994).
Church’s Thesis or the Church-Turing Thesis (concluded)

• Many other computation models have been proposed.
 – Recursive function (Gödel), λ calculus (Church), formal language (Post), assembly language-like RAM (Shepherdson & Sturgis), boolean circuits (Shannon), extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.

• All have been proved to be equivalent.
Alonso Church (1903–1995)
Extended Church’s Thesisa

• All “reasonably succinct encodings” of problems are \textit{polynomially related} (e.g., n^2 vs. n^6).
 – Representations of a graph as an adjacency matrix and as a linked list are both succinct.
 – The \textit{unary} representation of numbers is not succinct.
 – The \textit{binary} representation of numbers is succinct.
 * 1001_2 vs. 11111111_1.

• All numbers for TMs will be binary from now on.

aSome call it “polynomial Church’s thesis,” which Lószló Lovász attributed to Leonid Levin.
Extended Church’s Thesis (concluded)

- Representations that are not succinct may give misleadingly low complexities.
 - Consider an algorithm with binary inputs that runs in 2^n steps.
 - Suppose the input uses unary representation instead.
 - Then the same algorithm runs in linear time because the input length is now 2^n!

- So a succinct representation means honest accounting.
Physical Church-Turing Thesis

• The **physical Church-Turing thesis** states that:
 Anything computable in physics can also be computed on a Turing machine.\(^a\)

• The universe is a Turing machine.\(^b\)

\(^a\)Cooper (2012).
\(^b\)Edward Fredkin’s (1992) controversial digital physics.
The Strong Church-Turing Thesis

• The strong Church-Turing thesis states that:
 A Turing machine can compute any function computable by any “reasonable” physical device with only polynomial slowdown.\(^b\)

• A CPU, a GPU, and a DSP chip are good examples of physical devices.\(^c\)

\(^a\) Vergis, Steiglitz, & Dickinson (1986).
\(^c\) Thanks to a lively discussion on September 23, 2014.
The Strong Church-Turing Thesis (concluded)

• Factoring is believed to be a hard problem for Turing machines (but there is no proof yet).

• But a quantum computer can factor numbers in probabilistic polynomial time.a

• So if a large-scale quantum computer can be reliably built, the strong Church-Turing thesis may be refuted.b

aShor (1994).
bContributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on September 22, 2015.
Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- K, Σ, s are as before.
- $\delta : K \times \Sigma^k \rightarrow (K \cup \{ h, \text{“yes”}, \text{“no”} \}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k$.
- All strings start with a \triangleright.
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is the last (kth) string.
PALINDROME Revisited

- A 2-string TM can decide PALINDROME in \(O(n)\) steps.
 - It copies the input to the second string.
 - The cursor of the first string is positioned at the first symbol of the input.
 - The cursor of the second string is positioned at the last symbol of the input.
 - The symbols under the cursors are then compared.
 - The two cursors are then moved in opposite directions until the ends are reached.
 - The machine accepts if and only if the symbols under the two cursors are identical at all steps.
PALINDROME Revisited (concluded)

- The running times of a 2-string TM and a single-string TM are quadratically related: n^2 vs. n.

- This is consistent with the extended Church’s thesis.
 - “Reasonable” models are related polynomially in running times.
Configurations and Yielding

- The concept of configuration and yielding is the same as before except that a configuration is a \((2k + 1)\)-tuple

\[(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).\]

- \(w_i u_i\) is the \(i\)th string.
- The \(i\)th cursor is reading the last symbol of \(w_i\).
- Recall that \(\succ\) is each \(w_i\)'s first symbol.

- The \(k\)-string TM’s initial configuration is

\[
(s, \succ, x, \succ, \succ, \epsilon, \succ, \epsilon, \ldots, \succ, \epsilon).
\]
Time seemed to be the most obvious measure of complexity.

— Stephen Arthur Cook (1939–)
Time Complexity

• The multistring TM is the basis of our notion of the time expended by TMs.

• If a k-string TM M halts after t steps on input x, then the time required by M on input x is t.

• If $M(x) = \uparrow$, then the time required by M on x is ∞.
Time Complexity (concluded)

• Machine M operates within time $f(n)$ for $f : \mathbb{N} \rightarrow \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.

 – $|x|$ is the length of string x.

• Function $f(n)$ is a time bound for M.
Time Complexity Classes

- Suppose language $L \subseteq (\Sigma - \{\|\})^*$ is decided by a multistring TM operating in time $f(n)$.

- We say $L \in \text{TIME}(f(n))$.

- $\text{TIME}(f(n))$ is the set of languages decided by TMs with multiple strings operating within time bound $f(n)$.

- $\text{TIME}(f(n))$ is a complexity class.
 - PALINDROME is in $\text{TIME}(f(n))$, where $f(n) = O(n)$.

- Trivially, $\text{TIME}(f(n)) \subseteq \text{TIME}(g(n))$ if $f(n) \leq g(n)$ for all n.

\[^{a}\text{Hartmanis & Stearns (1965); Hartmanis, Lewis, & Stearns (1965).}\]

Juris Hartmanisa (1928–)

aTuring Award (1993).
Richard Edwin Stearnsa (1936–)

aTuring Award (1993).
The Simulation Technique

Theorem 3 Given any \(k \)-string \(M \) operating within time \(f(n) \), there exists a (single-string) \(M' \) operating within time \(O(f(n)^2) \) such that \(M(x) = M'(x) \) for any input \(x \).

- The single string of \(M' \) implements the \(k \) strings of \(M \).
The Proof

- Represent configuration \((q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)\) of \(M\) by this string of \(M'\):

 \[(q, \triangleright w'_1 u_1 \triangleleft w'_2 u_2 \triangleleft \cdots \triangleleft w'_k u_k \triangleleft \triangleleft).\]

 - \(\triangleleft\) is a special delimiter.
 - \(w'_i\) is \(w_i\) with the first\(^a\) and last symbols “primed.”
 - It serves the purpose of “,” in a configuration.\(^b\)

\(^a\)The first symbol is of course \(\triangleright\). It must be changed; otherwise, our TM would never move to its left again by our convention on p. 23.

\(^b\)An alternative is to use \((q, \triangleright w'_1 u_1 \triangleleft w'_2 u_2 \triangleleft \cdots \triangleleft w'_k u_k \triangleleft \triangleleft)\) by priming only \(\triangleright\) in \(w_i\), where “\(|\)” is a new symbol.
The Proof (continued)

- The “priming” of the last symbol of each w_i ensures that M' knows which symbol is under each cursor of M.\(^a\)

- The first symbol of w_i is the primed version of $\triangleright: \triangleright'$.
 - Recall TM cursors are not allowed to move to the left of \triangleright (p. 23).
 - Now the cursor of M' can move *between* the simulated strings of M.\(^b\)

\(^a\) Added because of comments made by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

\(^b\) Thanks to a lively discussion on September 22, 2009.
The Proof (continued)

• The initial configuration of M' is

$$(s, \triangleright \triangleright'' x \triangleleft \triangleright'' \triangleleft \cdots \triangleright'' \triangleleft \triangleleft).$$

- \triangleright'' is double-primed because it is the beginning and the ending symbol as the cursor is reading it.\(^a\)
- Again, think of it as a new symbol.

\(^a\)Added after the class discussion on September 20, 2011.
The Proof (continued)

- We simulate each move of M thus:
 1. M' scans the string to pick up the k symbols under the cursors.
 - The states of M' must be enlarged to include $K \times \Sigma^k$ to remember them.\(^a\)
 - The transition functions of M' must also reflect it.
 2. M' then changes the string to reflect the overwriting of symbols and cursor movements of M.

\(^a\)Recall the TM program on p. 31.
The Proof (continued)

• It is possible that some strings of M need to be lengthened (see next page).

 – The linear-time algorithm on p. 37 can be used for each such string.

• The simulation continues until M halts.

• M' then erases all strings of M except the last one.\(^a\)

\(^a\)Because whatever appears on the string of M' will be considered the output. So \triangleright's and \triangleright'''s need to be removed.
The Proof (continued)a

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
string 1 & string 2 & string 3 & string 4 \\
\hline
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
string 1 & string 2 & string 3 & string 4 \\
\hline
\end{tabular}
\end{center}

aIf we interleave the strings, the simulation may be easier. Contributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on September 22, 2015. This is similar to constructing a single-string \textit{multi-track} TM in, e.g., Hopcroft & Ullman (1969).
The Proof (continued)

- Since M halts within time $f(|x|)$, none of its strings ever becomes longer than $f(|x|)$.

- The length of the string of M' at any time is $O(kf(|x|))$.

- Simulating each step of M takes, per string of M, $O(kf(|x|))$ steps.
 - $O(f(|x|))$ steps to collect information from this string.
 - $O(kf(|x|))$ steps to write and, if needed, to lengthen the string.

\(^a\)We tacitly assume $f(n) \geq n$.
The Proof (concluded)

• \(M' \) takes \(O(k^2 f(|x|)) \) steps to simulate each step of \(M \) because there are \(k \) strings.

• As there are \(f(|x|) \) steps of \(M \) to simulate, \(M' \) operates within time \(O(k^2 f(|x|)^2) \).

\(^a\)Is the time reduced to \(O(k f(|x|)^2) \) if the interleaving data structure is adopted?
Simulation with Two-String TMs

We can do better with two-string TMs.

Theorem 4 Given any \(k \)-string \(M \) operating within time \(f(n) \), \(k > 2 \), there exists a two-string \(M' \) operating within time \(O(f(n) \log f(n)) \) such that \(M(x) = M'(x) \) for any input \(x \).
Linear Speedupa

Theorem 5 Let $L \in \text{TIME}(f(n))$. Then for any $\epsilon > 0$, $L \in \text{TIME}(f'(n))$, where $f'(n) = \epsilon f(n) + n + 2$.

aHartmanis & Stearns (1965).
Implications of the Speedup Theorem

• State size can be traded for speed.\(^a\)

• If the running time is \(cn\) with \(c > 1\), then \(c\) can be made arbitrarily close to 1.

• If the running time is superlinear, say \(14n^2 + 31n\), then the constant in the leading term (14 in this example) can be made arbitrarily small.

 – *Arbitrary* linear speedup can be achieved.\(^b\)

 – This justifies the big-O notation in the analysis of algorithms.

\(^a\)\(m^k \cdot |\Sigma|^{3mk}\)-fold increase to gain a speedup of \(O(m)\). No free lunch.

\(^b\)Can you apply the theorem multiple times to achieve superlinear speedup? Thanks to a question by a student on September 21, 2010.
P

• By the linear speedup theorem, any polynomial time bound can be represented by its leading term \(n^k \) for some \(k \geq 1 \).

• If \(L \in \text{TIME}(n^k) \) for some \(k \in \mathbb{N} \), it is a **polynomially decidable language**.
 - Clearly, \(\text{TIME}(n^k) \subseteq \text{TIME}(n^{k+1}) \).

• The union of all polynomially decidable languages is denoted by \(P \):
 \[
P = \bigcup_{k>0} \text{TIME}(n^k).
\]

• \(P \) contains problems that can be efficiently solved.
Philosophers have explained space.
They have not explained time.
— Arnold Bennett (1867–1931),
How To Live on 24 Hours a Day (1910)

I keep bumping into that silly quotation attributed to me that says 640K of memory is enough.
— Bill Gates (1996)
Space Complexity

• Consider a k-string TM M with input x.
• Assume non-$ bluff is never written over by $ bluff$.
 – The purpose is not to artificially reduce the space needs (see below).
• If M halts in configuration
 $$(H, w_1, u_1, w_2, u_2, \ldots, w_k, u_k),$$
 then the space required by M on input x is
 $$\sum_{i=1}^{k} |w_i u_i|.$$
Space Complexity (continued)

• Suppose we do not charge the space used only for input and output.

• Let $k > 2$ be an integer.

• A k-string Turing machine with input and output is a k-string TM that satisfies the following conditions.
 - The input string is read-only.a
 - The last string, the output string, is write-only.
 * So the cursor never moves to the left.
 - The cursor of the input string does not wander off into the $_|s$.

aCalled an off-line TM in Hartmanis, Lewis, & Stearns (1965).
Space Complexity (concluded)

• If M is a TM with input and output, then the space required by M on input x is

$$\sum_{i=2}^{k-1} |w_i u_i|.$$

• Machine M operates within space bound $f(n)$ for $f : \mathbb{N} \to \mathbb{N}$ if for any input x, the space required by M on x is at most $f(|x|)$.
Space Complexity Classes

• Let L be a language.

• Then

$$L \in \text{SPACE}(f(n))$$

if there is a TM with input and output that decides L and operates within space bound $f(n)$.

• $\text{SPACE}(f(n))$ is a set of languages.

 – $\text{PALINDROME} \in \text{SPACE}(\log n)$.\(^a\)

• A linear speedup theorem similar to the one on p. 92 exists, so constant coefficients do not matter.

\(^a\)Keep 3 counters.
If she can hesitate as to “Yes,”
she ought to say “No” directly.
— Jane Austen (1775–1817),

Emma (1815)
Nondeterminisma

- A nondeterministic Turing machine (NTM) is a quadruple \(N = (K, \Sigma, \Delta, s) \).

- \(K, \Sigma, s \) are as before.

- \(\Delta \subseteq K \times \Sigma \times (K \cup \{h, "yes", "no"\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\} \) is a relation, not a function.b
 - For each state-symbol combination \((q, \sigma)\), there may be multiple valid next steps.
 - Multiple lines of code may be applicable.

aRabin & Scott (1959).
bCorrected by Mr. Jung-Ying Chen (D95723006) on September 23, 2008.
Nondeterminism (continued)

• As before, a program contains lines of code:

\[(q_1, \sigma_1, p_1, \rho_1, D_1) \in \Delta,\]
\[(q_2, \sigma_2, p_2, \rho_2, D_2) \in \Delta,\]
\[\vdots\]
\[(q_n, \sigma_n, p_n, \rho_n, D_n) \in \Delta.\]

• But we cannot write

\[\delta(q_i, \sigma_i) = (p_i, \rho_i, D_i)\]

as in the deterministic case (p. 24) anymore.
Nondeterminism (concluded)

• A configuration yields another configuration in one step if there \textit{exists} a rule in \(\Delta \) that makes this happen.

• But only one will be taken.

• So there is only a single thread of computation.a

 – Nondeterminism is not parallelism, multiprocessing, multithreading, or quantum computation.

aThanks to a lively discussion on September 22, 2015.
Michael O. Rabina (1931–)

aTuring Award (1976).
Dana Stewart Scotta (1932–)

aTuring Award (1976).
Computation Tree and Computation Path

\[s \]

\[h \]

“no”

\[h \]

“yes”

\[“yes” \]
Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any $x \in \Sigma^*$, $x \in L$ if and only if there is a sequence of valid configurations that ends in “yes.”
- In other words,
 - If $x \in L$, then $N(x) = “yes”$ for some computation path.
 - If $x \not\in L$, then $N(x) \neq “yes”$ for all computation paths.
Decidability under Nondeterminism (concluded)

• It is not required that the NTM halts in all computation paths.\(^a\)

• If \(x \not\in L\), no nondeterministic choices should lead to a “yes” state.

• The key is the algorithm’s \textit{overall} behavior not whether it gives a correct answer for each particular run.

• Note that determinism is a special case of nondeterminism.

\(^a\)So “accepts” may be a more proper term. Some books use “decides” only when the NTM always halts.
Complementing a TM’s Halting States

- Let M decide L, and M' be M after “yes” \leftrightarrow “no”.
- If M is a deterministic TM, then M' decides \overline{L}.
 - So M and M' decide languages that complement each other.
- But if M is an NTM, then M' may not decide \overline{L}.
 - It is possible that M and M' accept the same input x (see next page).
 - So M and M' accept languages that are not complements of each other.
Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time $f(n)$, where $f : \mathbb{N} \rightarrow \mathbb{N}$, if
 - N decides L, and
 - for any $x \in \Sigma^*$, N does not have a computation path longer than $f(|x|)$.
- We charge only the “depth” of the computation tree.
Time Complexity Classes under Nondeterminism

- $\text{NTIME}(f(n))$ is the set of languages decided by NTMs within time $f(n)$.
- $\text{NTIME}(f(n))$ is a complexity class.
NP ("Nondeterministic Polynomial")

• Define

$$NP = \bigcup_{k>0} \text{NTIME}(n^k).$$

• Clearly $P \subseteq NP$.

• Think of NP as efficiently \textit{verifiable} problems (see p. 328).
 – Boolean satisfiability (p. 117 and p. 192).

• The most important open problem in computer science is whether $P = NP$.
Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.

Theorem 6 Suppose language L is decided by an NTM N in time $f(n)$. Then it is decided by a 3-string deterministic TM M in time $O(c^{f(n)})$, where $c > 1$ is some constant depending on N.

- On input x, M goes down every computation path of N using depth-first search.
 - M does not need to know $f(n)$.
 - As N is time-bounded, the depth-first search will not run indefinitely.
The Proof (concluded)

• If any path leads to “yes,” then M immediately enters the “yes” state.

• If none of the paths lead to “yes,” then M enters the “no” state.

• The simulation takes time $O(c^f(n))$ for some $c > 1$ because the computation tree has that many nodes.

Corollary 7 $\text{NTIME}(f(n))) \subseteq \bigcup_{c>1} \text{TIME}(c^f(n)).^a$

^aMr. Kai-Yuan Hou (B99201038, R03922014) on October 6, 2015: $\bigcup_{c>1} \text{TIME}(c^f(n)) \subseteq \text{NTIME}(f(n)))$?
NTIME vs. TIME

• Does converting an NTM into a TM require exploring all computation paths of the NTM as done in Theorem 6 (p. 114)?

• This is a key question in theory with important practical implications.
A Nondeterministic Algorithm for Satisfiability

\(\phi \) is a boolean formula with \(n \) variables.

1: \textbf{for} \(i = 1, 2, \ldots, n \) \textbf{do}
2: \hspace{1em} \text{Guess} \(x_i \in \{0, 1\} \); \{Nondeterministic choices.\}
3: \hspace{1em} \textbf{end for}
4: \{Verification:\}
5: \textbf{if} \(\phi(x_1, x_2, \ldots, x_n) = 1 \) \textbf{then}
6: \hspace{1em} “yes”;
7: \textbf{else}
8: \hspace{1em} “no”;
9: \textbf{end if}
Computation Tree for Satisfiability

$x_1 = 0$

$x_2 = 1$

$x_3 = 1$

$x_4 = 0$

$x_5 = 0$

$x_6 = 1$

$x_7 = 1$

$x_8 = 0$

“no” “yes” “no” “yes” “yes” “no” “no” “no” “yes”
Analysis

• The computation tree is a complete binary tree of depth n.

• Every computation path corresponds to a particular truth assignment\(^a\) out of 2^n.

• Recall that ϕ is satisfiable if and only if there is a truth assignment that satisfies ϕ.

\(^a\)Equivalently, a sequence of nondeterministic choices.
Analysis (concluded)

• The algorithm decides language

\[\{ \phi : \phi \text{ is satisfiable} \} . \]

 – Suppose \(\phi \) is satisfiable.
 * There is a truth assignment that satisfies \(\phi \).
 * So there is a computation path that results in “yes.”
 – Suppose \(\phi \) is not satisfiable.
 * That means every truth assignment makes \(\phi \) false.
 * So every computation path results in “no.”

• General paradigm: Guess a “proof” then verify it.