
Maximum Satisfiability

• Given a set of clauses, maxsat seeks the truth

assignment that satisfies the most.

• max2sat is already NP-complete (p. 333), so maxsat is

NP-complete.

• Consider the more general k-maxgsat for constant k.

– Let Φ = {φ1, φ2, . . . , φm } be a set of boolean

expressions in n variables.

– Each φi is a general expression involving up to k

variables.

– k-maxgsat seeks the truth assignment that satisfies

the most expressions.
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A Probabilistic Interpretation of an Algorithm

• Let φi involve ki ≤ k variables and be satisfied by si of

the 2ki truth assignments.

• A random truth assignment ∈ { 0, 1 }n satisfies φi with

probability p(φi) = si/2
ki .

– p(φi) is easy to calculate as k is a constant.

• Hence a random truth assignment satisfies an average of

p(Φ) =
m∑
i=1

p(φi)

expressions φi.
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The Search Procedure

• Clearly

p(Φ) =
1

2
{ p(Φ[x1 = true ]) + p(Φ[x1 = false ]) }.

• Select the t1 ∈ { true, false } such that p(Φ[x1 = t1 ]) is

the larger one.

• Note that p(Φ[x1 = t1 ]) ≥ p(Φ).

• Repeat the procedure with expression Φ[x1 = t1 ] until

all variables xi have been given truth values ti and all φi

are either true or false.
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The Search Procedure (continued)

• By our hill-climbing procedure,

p(Φ)

≤ p(Φ[x1 = t1 ])

≤ p(Φ[x1 = t1, x2 = t2 ])

≤ · · ·
≤ p(Φ[x1 = t1, x2 = t2, . . . , xn = tn ]).

• So at least p(Φ) expressions are satisfied by truth

assignment (t1, t2, . . . , tn).
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The Search Procedure (concluded)

• Note that the algorithm is deterministic!

• It is called the method of conditional

expectations.a

aErdős and Selfridge (1973); Spencer (1987).
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Approximation Analysis

• The optimum is at most the number of satisfiable

φi—i.e., those with p(φi) > 0.

• Hence the ratio of algorithm’s output vs. the optimum

isa

≥ p(Φ)∑
p(φi)>0 1

=

∑
i p(φi)∑

p(φi)>0 1
≥ min

p(φi)>0
p(φi).

• This is a polynomial-time ε-approximation algorithm

with ε = 1−minp(φi)>0 p(φi) by Eq. (19) on p. 702.

• Because p(φi) ≥ 2−k for a satisfiable φi, the heuristic is

a polynomial-time ε-approximation algorithm with

ε = 1− 2−k.
aRecall that

∑
i ai/

∑
i bi ≥ mini(ai/bi).
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Back to maxsat

• In maxsat, the φi’s are clauses (like x ∨ y ∨ ¬z).
• Hence p(φi) ≥ 1/2 (why?).

• The heuristic becomes a polynomial-time

ε-approximation algorithm with ε = 1/2.a

• Suppose we set each boolean variable to true with

probability (
√
5 − 1)/2, the golden ratio.

• Then follow through the method of conditional

expectations to derandomize it.

aJohnson (1974).
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Back to maxsat (concluded)

• We will obtain a [ (3−√
5 ) ]/2-approximation

algorithm.a

– Note [ (3−√
5 ) ]/2 ≈ 0.382.

• If the clauses have k distinct literals,

p(φi) = 1− 2−k.

• The heuristic becomes a polynomial-time

ε-approximation algorithm with ε = 2−k.

– This is the best possible for k ≥ 3 unless P = NP.

• All the results hold even if clauses are weighted.

aLieberherr and Specker (1981).
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max cut Revisited

• max cut seeks to partition the nodes of graph

G = (V,E) into (S, V − S) so that there are as many

edges as possible between S and V − S.

• It is NP-complete (p. 368).

• Local search starts from a feasible solution and

performs “local” improvements until none are possible.

• Next we present a local-search algorithm for max cut.
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A 0.5-Approximation Algorithm for max cut

1: S := ∅;
2: while ∃v ∈ V whose switching sides results in a larger

cut do

3: Switch the side of v;

4: end while

5: return S;
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Analysis

V3 V4

V2V1

Optimal cut

Our cut

e12

e13
e24

e34

e14 e23
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Analysis (continued)

• Partition V = V1 ∪ V2 ∪ V3 ∪ V4, where

– Our algorithm returns (V1 ∪ V2, V3 ∪ V4).

– The optimum cut is (V1 ∪ V3, V2 ∪ V4).

• Let eij be the number of edges between Vi and Vj .

• Our algorithm returns a cut of size

e13 + e14 + e23 + e24.

• The optimum cut size is

e12 + e34 + e14 + e23.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 722



Analysis (continued)

• For each node v ∈ V1, its edges to V1 ∪ V2 are

outnumbered by those to V3 ∪ V4.

– Otherwise, v would have been moved to V3 ∪ V4 to

improve the cut.

• Considering all nodes in V1 together, we have

2e11 + e12 ≤ e13 + e14.

– 2e11, because each edge in V1 is counted twice.

• The above inequality implies

e12 ≤ e13 + e14.
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Analysis (concluded)

• Similarly,

e12 ≤ e23 + e24

e34 ≤ e23 + e13

e34 ≤ e14 + e24

• Add all four inequalities, divide both sides by 2, and add

the inequality e14 + e23 ≤ e14 + e23 + e13 + e24 to obtain

e12 + e34 + e14 + e23 ≤ 2(e13 + e14 + e23 + e24).

• The above says our solution is at least half the optimum.
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Remarks

• A 0.12-approximation algorithm exists.a

• 0.059-approximation algorithms do not exist unless

NP = ZPP.b

aGoemans & Williamson (1995).
bH̊astad (1997).
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Approximability, Unapproximability, and Between

• Some problems have approximation thresholds less than

1.

– knapsack has a threshold of 0 (p. 749).

– node cover (p. 708), bin packing, and maxsat

have a threshold larger than 0.

• The situation is maximally pessimistic for tsp (p. 727)

and independent set,a which cannot be approximated

– Their approximation threshold is 1.

aSee the textbook.
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Unapproximability of tspa

Theorem 79 The approximation threshold of tsp is 1

unless P = NP.

• Suppose there is a polynomial-time ε-approximation

algorithm for tsp for some ε < 1.

• We shall construct a polynomial-time algorithm to solve

the NP-complete hamiltonian cycle.

• Given any graph G = (V,E), construct a tsp with |V |
cities with distances

dij =

⎧⎨
⎩ 1, if [ i, j ] ∈ E,

|V |
1−ε , otherwise.

aSahni & Gonzales (1976).
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The Proof (concluded)

• Run the alleged approximation algorithm on this tsp.

• Suppose a tour of cost |V | is returned.
– This tour must be a Hamiltonian cycle.

• Suppose a tour that includes an edge of length |V |
1−ε is

returned.

– The total length of this tour is > |V |
1−ε .

a

– Because the algorithm is ε-approximate, the optimum

is at least 1− ε times the returned tour’s length.

– The optimum tour has a cost exceeding |V |.
– Hence G has no Hamiltonian cycles.

aSo this reduction is gap introducing.
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metric tsp

• metric tsp is similar to tsp.

• But the distances must satisfy the triangular inequality:

dij ≤ dik + dkj

for all i, j, k.
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A 0.5-Approximation Algorithm for metric tspa

• It suffices to present an algorithm with the

approximation ratio of

c(M(x))

opt(x)
≤ 2

(see p. 703).

aChoukhmane (1978); Iwainsky, Canuto, Taraszow, & Villa (1986);

Kou, Markowsky, & Berman (1981); Plesńık (1981).
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A 0.5-Approximation Algorithm for metric tsp
(concluded)

1: T := a minimum spanning tree of G;

2: T ′ := double the edges of T ; {Note: T ′ is an Eulerian

multigraph.}
3: C := an Euler cycle of T ′;
4: Remove repeated nodes of C; {“Shortcutting.”}
5: return C;
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Analysis

• Let Copt be an optimal tsp tour.

• Note first that

c(T ) ≤ c(Copt). (20)

– Copt is a spanning tree after the removal of one edge.

– But T is a minimum spanning tree.

• Becaue T ′ doubles the edges of T ,

c(T ′) = 2c(T ).
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Analysis (concluded)

• Because of the triangular inequality, “shortcutting” does

not increase the cost.

– (1, 2, 3, 2, 1, 4, . . .) → (1, 2, 3, 4, . . .), a Hamiltonian

cycle.

• Thus

c(C) ≤ c(T ′).

• Combine all the inequalities to yield

c(C) ≤ c(T ′) = 2c(T ) ≤ 2c(Copt),

as desired.
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A 100-Node Example

The cost is 7.72877.
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A 100-Node Example (continued)

The minimum spanning tree T .
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A 100-Node Example (continued)

“Shortcutting” the repeated nodes on the Euler cycle C.
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A 100-Node Example (concluded)

The cost is 10.5718 ≤ 2× 7.72877 = 15.4576.
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A (1/3)-Approximation Algorithm for metric tspa

• It suffices to present an algorithm with the

approximation ratio of

c(M(x))

opt(x)
≤ 3

2

(see p. 703).

• This is the best approximation ratio for metric tsp as

of 2016!

aChristofides (1976).
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A (1/3)-Approximation Algorithm for metric tsp
(concluded)

1: T := a minimum spanning tree of G;

2: V ′ := the set of nodes with an odd degree in T ; {|V ′ |
must be even.}

3: G′ := the induced subgraph of G by V ′; {G′ is a
complete graph on V ′.}

4: M := a minimum-cost perfect matching of G′;
5: G′′ := T ∪M ; {G′′ is an Eulerian multigraph.}
6: C := an Euler cycle of G′′;
7: Remove repeated nodes of C; {“Shortcutting.”}
8: return C;
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Analysis

• Let Copt be an optimal tsp tour.

• By Eq. (20) on p. 732, c(T ) ≤ c(Copt).

• Let C ′ be Copt on V ′ by “shortcutting.”

– Copt is a Hamiltonian cycle on V .

– Replace any path (v1, v2, . . . , vk) on Copt with

(v1, vk), where v1, vk ∈ V ′ but v2, . . . , vk−1 �∈ V ′.

• By the triangular inequality,

c(C ′) ≤ c(Copt).

• C ′ is now a Hamiltonian cycle on V ′.
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Analysis (continued)

• C ′ consists of two perfect matchings on G′.a

– The first, third, . . . edges constitute one.

– The second, fourth, . . . edges constitute the other.

• The cheaper perfect matching has cost

c(C ′)
2

≤ c(Copt)

2
.

• As a result, the minimum-cost one M must satisfy

c(M) ≤ c(C ′)
2

≤ c(Copt)

2
.

aNote that G′ is a complete graph.
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Analysis (concluded)

• Minimum-cost perfect matching can be solved in

polynomial time.a

• Finally, by combining the two earlier inequalities, the

Euler cycle C has a cost of

c(C) ≤ c(T ) + c(M)

≤ c(Copt) +
c(Copt)

2

=
3

2
c(Copt),

as desired.

aEdmonds (1965); Micali & V. Vazirani (1980).
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A 100-Node Example

The cost is 7.72877.
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A 100-Node Example (continued)
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A 100-Node Example (continued)

A perfect matching M (not necessarily optimal, however).
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A 100-Node Example (continued)

The Euler cycle C of G′′ = T ∪M .
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A 100-Node Example (continued)

“Shortcutting” the repeated nodes on the Euler cycle C.
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A 100-Node Example (concluded)

The cost is 8.74583 ≤ (3/2)× 7.72877 = 11.5932.
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knapsack Has an Approximation Threshold of Zeroa

Theorem 80 For any ε, there is a polynomial-time

ε-approximation algorithm for knapsack.

• We have n weights w1, w2, . . . , wn ∈ Z
+, a weight limit

W , and n values v1, v2, . . . , vn ∈ Z
+.b

• We must find an I ⊆ { 1, 2, . . . , n } such that∑
i∈I wi ≤ W and

∑
i∈I vi is the largest possible.

aIbarra & Kim (1975).
bIf the values are fractional, the result is slightly messier, but the main

conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011,

R93922045) on December 29, 2004.
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The Proof (continued)

• Let

V = max{ v1, v2, . . . , vn }.
• Clearly,

∑
i∈I vi ≤ nV .

• Let 0 ≤ i ≤ n and 0 ≤ v ≤ nV .

• W (i, v) is the minimum weight attainable by selecting

only from the first i items and with a total value of v.

– It is an (n+ 1)× (nV + 1) table.
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The Proof (continued)

• Set W (0, v) = ∞ for v ∈ { 1, 2, . . . , nV } and W (i, 0) = 0

for i = 0, 1, . . . , n.a

• Then, for 0 ≤ i < n and 1 ≤ v ≤ nV ,b

W (i+ 1, v)

=

⎧⎨
⎩ min{W (i, v),W (i, v − vi+1) + wi+1 }, if v ≥ vi+1,

W (i, v), otherwise.

• Finally, pick the largest v such that W (n, v) ≤ W .c

aContributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu

(D98922013) on December 28, 2009.
bThe textbook’s formula has an error.
cLawler (1979).
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v0 nV

W≤
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The Proof (continued)

With 6 items, weights (3, 3, 1, 3, 2, 1), values (4, 3, 3, 3, 2, 3),

and W = 12, maximum total value 16 is achieved with

I = { 1, 2, 3, 4, 6 } and total weight 11.
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The Proof (continued)

• The running time O(n2V ) is not polynomial.

• Call the problem instance

x = (w1, . . . , wn,W, v1, . . . , vn).

• Additional idea: Limit the number of precision bits.

• Define

v′i =
⌊ vi
2b

⌋
.

• Note that

vi ≥ 2bv′i > vi − 2b.
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The Proof (continued)

• Call the approximate instance

x′ = (w1, . . . , wn,W, v′1, . . . , v
′
n).

• Solving x′ takes time O(n2V/2b).

– Use v′i = �vi/2b� and V ′ = max(v′1, v
′
2, . . . , v

′
n) in the

dynamic programming.

– It is now an (n+ 1)× (nV + 1)/2b table.

• The selection I ′ is optimal for x′.

• But I ′ may not be optimal for x, although it still

satisfies the weight budget W .
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The Proof (continued)

With the same parameters as p. 753 and b = 1: Values are

now (2, 1, 1, 1, 1, 1) and a smaller total maximum value

4+ 3+ 3+ 2+ 3 = 15 is achieved with I ′ = { 1, 2, 3, 5, 6 } and

total weight 10.a

aThe original optimal I = { 1, 2, 3, 4, 6 } has value 6 and weight 11 for

x′, whereas I′ has the same total value 6 but smaller total weight 10.
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The Proof (continued)

• The value of I ′ for x is close to that of the optimal I :∑
i∈I′

vi ≥
∑
i∈I′

2bv′i = 2b
∑
i∈I′

v′i

≥ 2b
∑
i∈I

v′i =
∑
i∈I

2bv′i

≥
∑
i∈I

(
vi − 2b

)

≥
(∑

i∈I

vi

)
− n2b.
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The Proof (continued)

• In summary,

∑
i∈I′

vi ≥
(∑

i∈I

vi

)
− n2b.

• Without loss of generality, assume wi ≤ W for all i.

– Otherwise, item i is redundant.

• V is a lower bound on opt.

– Picking an item with value V is a legitimate choice.
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The Proof (concluded)

• The relative error from the optimum is:∑
i∈I vi −

∑
i∈I′ vi∑

i∈I vi
≤
∑

i∈I vi −
∑

i∈I′ vi

V
≤ n2b

V
.

• Suppose we pick b = �log2 εV
n �.

• The algorithm becomes ε-approximate.a

• The running time is then O(n2V/2b) = O(n3/ε), a

polynomial in n and 1/ε.b

aSee Eq. (16) on p. 697.
bIt hence depends on the value of 1/ε. Thanks to a lively class dis-

cussion on December 20, 2006. If we fix ε and let the problem size

increase, then the complexity is cubic. Contributed by Mr. Ren-Shan

Luoh (D97922014) on December 23, 2008.
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Comments

• independent set and node cover are reducible to

each other (Corollary 41, p. 360).

• node cover has an approximation threshold at most

0.5 (p. 710).

• But independent set is unapproximable (see the

textbook).

• independent set limited to graphs with degree ≤ k is

called k-degree independent set.

• k-degree independent set is approximable (see the

textbook).
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Finis
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