Maximum Satisfiability

e Given a set of clauses, MAXSAT seeks the truth

assignment that satisfies the most.

e MAX2SAT is already NP-complete (p. 333), so MAXSAT is
NP-complete.

e Consider the more general k-MAXGSAT for constant k.
— Let ® = { ¢1,¢2,...,0m } be a set of boolean

expressions in n variables.

— Each ¢; is a general expression involving up to k

variables.

— k-MAXGSAT seeks the truth assignment that satisfies

the most expressions.
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A Probabilistic Interpretation of an Algorithm

e Let ¢, involve k; < k variables and be satisfied by s; of

the 2% truth assignments.

e A random truth assignment € { 0,1 }" satisfies ¢; with
probability p(¢;) = s;/2%.

— p(¢;) is easy to calculate as k is a constant.

e Hence a random truth assignment satisfies an average of

m

p(®) = p(¢s)

1=1

expressions @, .
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The Search Procedure

Clearly

p(®) = 3 {p(®[z1 = true]) + p(®[x; = false])}.

Select the t1 € { true, false } such that p(®[x, =1t1]) is

the larger one.
Note that p(®[xz1 =t1]) > p(P).

Repeat the procedure with expression ®|x; = t1 ] until
all variables x; have been given truth values ¢; and all ¢,

are either true or false.
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The Search Procedure (continued)

e By our hill-climbing procedure,

p(®)
p(®[z1 =11])
p(Pzy =t1, 22 =12])

p((I)[l‘l — tl,il?g — tQ,. N )

e So at least p(®) expressions are satisfied by truth

assignment (t1,t2,...,t,).
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The Search Procedure (concluded)

e Note that the algorithm is deterministic!

e [t is called the method of conditional

expectations.?

aErdés and Selfridge (1973); Spencer (1987).
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Approximation Analysis

The optimum is at most the number of satisfiable
¢p;—i.e., those with p(¢;) > 0.

Hence the ratio of algorithm’s output vs. the optimum

182

> p(P) _ Zzp(¢z)

; ZP(¢z’)>O 1

This is a polynomial-time e-approximation algorithm
with € = 1 —min,4,)>0 p(¢:) by Eq. (19) on p. 702.

Because p(¢;) > 27% for a satisfiable ¢;, the heuristic is
a polynomial-time e-approximation algorithm with
e=1-27"

®Recall that ). a;/> . b; > min;(a;/b;).
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Back to MAXSAT

In MAXSAT, the ¢;’s are clauses (like x V y V —z).

Hence p(¢;) > 1/2 (why?).

The heuristic becomes a polynomial-time

e-approximation algorithm with e = 1/2.2

Suppose we set each boolean variable to true with
probability (v/5 — 1)/2, the golden ratio.

Then follow through the method of conditional

expectations to derandomize it.

2Johnson (1974).
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Back to MAXSAT (concluded)

We will obtain a [(3 — /5 )]/2-approximation
algorithm.?

— Note [ (3 —+/5)]/2 ~ 0.382.

If the clauses have k distinct literals,
p(d) =1—27F

The heuristic becomes a polynomial-time

e-approximation algorithm with e = 27,

— This is the best possible for k£ > 3 unless P = NP.

e All the results hold even if clauses are weighted.

2Lieberherr and Specker (1981).
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MAX CUT Revisited

MAX CUT seeks to partition the nodes of graph
G = (V, F) into (S,V — S) so that there are as many
edges as possible between S and V' — 5.

It is NP-complete (p. 368).

Local search starts from a feasible solution and

performs “local” improvements until none are possible.

Next we present a local-search algorithm for MAX CUT.
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A 0.5-Approximation Algorithm for MAX CUT
. S = (Z);

: while Jv € V whose switching sides results in a larger

cut do
Switch the side of v;
. end while

. return S;
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Analysis

/ Optimal cut
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Analysis (continued)

Partition V = V; U V5 U V3 U V,, where
— Our algorithm returns (V3 UV, V3 U Vy).
— The optimum cut is (V1 U V3, Vo U Vy).

Let e;; be the number of edges between V; and V.

Our algorithm returns a cut of size
€13 + €14 + €23 + €24.
The optimum cut size is

€12 + €34 + €14 + €23.
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Analysis (continued)

e For each node v € V7, its edges to V7 U V5 are
outnumbered by those to V3 U Vj.

— Otherwise, v would have been moved to V3 U Vj to

improve the cut.

e Considering all nodes in V; together, we have

2e11 +e12 < e13 + eyy.

— 2eq11, because each edge in V; is counted twice.

e The above inequality implies

e12 < e13 + €e14.
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Analysis (concluded)

e Similarly,

€12 €23 + €24
€34 €23 + €13

€34 €14 + €24

e Add all four inequalities, divide both sides by 2, and add

the inequality e14 + e23 < €14 + €23 + €13 + €24 to obtain
e12 + €34 + €14 + €23 < 2(e13 + €14 + €23 + €24).

e The above says our solution is at least half the optimum.
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Remarks

e A 0.12-approximation algorithm exists.?

e 0.059-approximation algorithms do not exist unless
NP = ZPP.

2Goemans & Williamson (1995).
PHastad (1997).
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Approximability, Unapproximability, and Between

e Some problems have approximation thresholds less than
1.

— KNAPSACK has a threshold of 0 (p. 749).
— NODE COVER (p. 708), BIN PACKING, and MAXSAT
have a threshold larger than O.
e The situation is maximally pessimistic for TSP (p. 727)
and INDEPENDENT SET,* which cannot be approximated

— Their approximation threshold is 1.

2See the textbook.
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Unapproximability of Tsp?

Theorem 79 The approximation threshold of TSP s 1
unless P = NP.

e Suppose there is a polynomial-time e-approximation
algorithm for TSP for some € < 1.

e We shall construct a polynomial-time algorithm to solve
the NP-complete HAMILTONIAN CYCLE.

e Given any graph G = (V, F), construct a TSP with | V|
cities with distances

Clen
N it (1,5

1,
|V |

1—e”’

otherwise.

2Sahni & Gonzales (1976).
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The Proof (concluded)

e Run the alleged approximation algorithm on this TSP.

e Suppose a tour of cost | V| is returned.

— This tour must be a Hamiltonian cycle.

V1

e Suppose a tour that includes an edge of length +— is

returned.

— The total length of this tour is > %.a

Because the algorithm is e-approximate, the optimum

is at least 1 — € times the returned tour’s length.
The optimum tour has a cost exceeding | V' |.

— Hence G has no Hamiltonian cycles.

2So this reduction is gap introducing.
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METRIC TSP
e METRIC TSP is similar to TSP.

e But the distances must satisfy the triangular inequality:

dij < d;j + di;

for all 7, 5, k.
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A 0.5-Approximation Algorithm for METRIC TSP?

e It suffices to present an algorithm with the

approximation ratio of

c(M(z))
OPT(x)

<9

(see p. 703).

2Choukhmane (1978); Iwainsky, Canuto, Taraszow, & Villa (1986);
Kou, Markowsky, & Berman (1981); Plesnik (1981).
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A 0.5-Approximation Algorithm for METRIC TSP
(concluded)

. T := a minimum spanning tree of G;
. T" := double the edges of T'; {Note: T” is an Eulerian

multigraph. }
. C := an Euler cycle of T”;
. Remove repeated nodes of C'; {“Shortcutting.” }

. return C';
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Analysis

e Let Cypy be an optimal TSP tour.

e Note first that
c(T) < c(Copt)- (20)

— Copt 1s a spanning tree after the removal of one edge.

— But 7' is a minimum spanning tree.

e Becaue T' doubles the edges of T,

c(T") = 2¢(T).
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Analysis (concluded)

e Because of the triangular inequality, “shortcutting” does
not increase the cost.

- (1,2,3,2,1,4,...) = (1,2,3,4,...), a Hamiltonian

cycle.

e Thus
c(C) < e(Th).

e Combine all the inequalities to yield

c(C) < e(T") = 2¢(T) < 2¢(Copt),

as desired.
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A 100-Node Example

Cities

The cost 1s 7.72877.
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A 100-Node Example (continued)

The minimum spanning tree 7.
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A 100-Node Example (continued)

1.0

“Shortcutting” the repeated nodes on the Euler cycle C.
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A 100-Node Example (concluded)

Short-cutting Euler cycle Approximate TSP

The cost is 10.5718 < 2 x 7.72877 = 15.4576.
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A (1/3)-Approximation Algorithm for METRIC TSP?

e It suffices to present an algorithm with the

approximation ratio of

c(M(x))
OPT(x)

<

3
2

(see p. 703).

e This is the best approximation ratio for METRIC TSP as
of 2016!

2Christofides (1976).
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A (1/3)-Approximation Algorithm for METRIC TSP
(concluded)
1: 7' := a minimum spanning tree of G’
2: V' := the set of nodes with an odd degree in T; {| V|
must be even.}
. G’ := the induced subgraph of G by V'; {G’ is a
complete graph on V'.}
. M := a minimum-cost perfect matching of G’;
. G":=TUM; {G" is an Eulerian multigraph.}
. C' := an Euler cycle of G”;

. Remove repeated nodes of C'; {“Shortcutting.” }

. return C';
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Analysis
Let Copt be an optimal TSP tour.
By Eq. (20) on p. 732, ¢(T") < ¢(Copt)-

Let C" be Cyp on V' by “shortcutting.”
— Copt 1s a Hamiltonian cycle on V.

— Replace any path (v, vs,...,v;) on Copy with
(v1,v), where vy, v, € V' but vg, ..., 01 &€ V',

By the triangular inequality,

c(C") < ¢(Copt)-

C’ is now a Hamiltonian cycle on V.
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Analysis (continued)

e (' consists of two perfect matchings on G'.2
— The first, third, ... edges constitute one.

— The second, fourth, ... edges constitute the other.

e The cheaper perfect matching has cost

o(€) _ e(Cop)
2 2

e As a result, the minimum-cost one M must satisfy

) < A€  elCop)
2 2

aNote that G’ is a complete graph.
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Analysis (concluded)

e Minimum-cost perfect matching can be solved in

polynomial time.?

e Finally, by combining the two earlier inequalities, the

Euler cycle C has a cost of
c(C) c(T) + c(M)
c(C,
C<Copt) + ( 2pt)
3
5 C(COPt)a

as desired.

2Edmonds (1965); Micali & V. Vazirani (1980).
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A 100-Node Example

Cities

The cost 1s 7.72877.
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A 100-Node Example (continued)

Odd-degree nodes V'on MST
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A 100-Node Example (continued)

A perfect matching M (not necessarily optimal, however).
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A 100-Node Example (continued)

The Euler cycle C of G =T U M.
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A 100-Node Example (continued)

LA O,
K .{,,\//-' /
vy ,

/oo

“Shortcutting” the repeated nodes on the Euler cycle C.
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A 100-Node Example (concluded)

Short-cutting the Euler cycle Approximate TSP

o
o ©
*—9—e

The cost is 8.74583 < (3/2) x 7.72877 = 11.5932.
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KNAPSACK Has an Approximation Threshold of Zero®

Theorem 80 For any €, there is a polynomial-time

e-approximation algorithm for KNAPSACK.

e We have n weights wy, wo, ..., w, € Z1, a weight limit

W, and n values vy, vo,...,v, € ZT.P

e We must find an I C {1,2,...,n} such that
D icswi < W and ) ., v; is the largest possible.

2Ibarra & Kim (1975).
PIf the values are fractional, the result is slightly messier, but the main

conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011,
R93922045) on December 29, 2004.
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The Proof (continued)

V = max{v,va,...,0, }.
Clearly, ) .., vi <nV.
Let 0<i:<nand 0 <ov<nV.

W (i,v) is the minimum weight attainable by selecting

only from the first ¢ items and with a total value of v.

— Itisan (n+ 1) x (nV 4+ 1) table.
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The Proof (continued)
e Set W(0,v) =oc0forve{l,2,...,nV } and W(i,0) =0

fort=0,1,...,n.2

e Then, for0<i<nand1<v<nV]P

Wi+1,v)

min{ W (¢,v), W(i,v — vj41) + wir1 }, if v > w41,
W (i,v), otherwise.

e Finally, pick the largest v such that W(n,v) < W.C

2Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu

(D98922013) on December 28, 2009.

PThe textbook’s formula has an error.
“Lawler (1979).
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The Proof (continued)
With 6 items, weights (3,3,1,3,2,1), values (4, 3,3, 3,2, 3),

and W = 12, maximum total value 16 is achieved with
I'={1,2,3,4,6} and total weight 11.

(0.0
3
1
1
1
1

(0. 0) (0.0
(0 0] (0. 0]
(0. 0) (0.0
4 7
4 7
4 7
2 5

(e0)
(e0)
(e0)
(e0)
(e0)
(e0)
1]
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The Proof (continued)

The running time O(n?V) is not polynomial.
Call the problem instance

r = (wy,...,Wn, W,v1,...,05).

Additional idea: Limit the number of precision bits.

Define

Note that
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The Proof (continued)

Call the approximate instance

/ / /
= (wy,..., wy, W0, ..., 0,).

Solving 2’ takes time O(n?V/2%).
— Use v}, = |v;/2°] and V' = max(v],v},...,v
dynamic programming.

— It is now an (n 4+ 1) x (nV 4 1)/2° table.
The selection I’ is optimal for z’.

But I’ may not be optimal for z, although it still
satisfies the weight budget WW.
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The Proof (continued)

With the same parameters as p. 753 and b = 1: Values are
now (2,1,1,1,1,1) and a smaller total maximum value
443434243 =15is achieved with I' ={1,2,3,5,6 } and
total weight 10.?

(oo
3
1
1
1
1

oo | OO
oo | oo
6 |
4 |7
4 |7
416
415

2The original optimal I = {1,2,3,4,6 } has value 6 and weight 11 for
x’, whereas I’ has the same total value 6 but smaller total weight 10.
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The Proof (continued)

e The value of I’ for x is close to that of the optimal I:

Zvi > 22%2:217207’:

rel’ rel’ rel’

> Zva,g = 22%2

el el

Z (vi — Qb)

el

jg:?% -—7%2b.

el
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The Proof (continued)

e In summary,
Z (% Z Z Vi | — n2b.
icl’ i€l
e Without loss of generality, assume w; < W for all 1.
— Otherwise, item 7 is redundant.

e V is a lower bound on OPT.

— Picking an item with value V' is a legitimate choice.
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The Proof (concluded)

The relative error from the optimum is:

Zie[ Ui — Zie[’ Uq < Zie] Uy — Ziep Uy <
Zie[ U; vV

Suppose we pick b = |log, %J

The algorithm becomes e-approximate.®

The running time is then O(n?V/2°%) = O(n3/e), a

polynomial in n and 1/e.”

2See Eq. (16) on p. 697.

PIt hence depends on the wvalue of 1/e. Thanks to a lively class dis-
cussion on December 20, 2006. If we fix ¢ and let the problem size
increase, then the complexity is cubic. Contributed by Mr. Ren-Shan
Luoh (D97922014) on December 23, 2008.
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Comments

INDEPENDENT SET and NODE COVER are reducible to
each other (Corollary 41, p. 360).

NODE COVER has an approximation threshold at most
0.5 (p. 710).

But INDEPENDENT SET is unapproximable (see the
textbook).

INDEPENDENT SET limited to graphs with degree < k is
called k-DEGREE INDEPENDENT SET.

k-DEGREE INDEPENDENT SET is approximable (see the
textbook).
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Finas
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