The Markov Inequality?®

Lemma 62 Let x be a random variable taking nonnegative

integer values. Then for any k > 0,
problz > kE[xz]] < 1/k.

e Let p; denote the probability that x = 1.

Elx] = Zipi: Z ipi + Z

( i<kE[x] i>kE[x

> ) ipi > kE[z] ) pz

i>kE[x] i>kE[x
> kFE|x] X problx > ]{:E[x]]

2 Andrei Andreyevich Markov (1856-1922).
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Andrei Andreyevich Markov (1856-1922)
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FSAT for k-SAT Formulas (p. 484)

Let ¢(x1,x2,...,x,) be a k-SAT formula.

If ¢ is satisfiable, then return a satisfying truth

assignment.
Otherwise, return “no.”

We next propose a randomized algorithm for this

problem.
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A Random Walk Algorithm for ¢ in CNF Form

. Start with an arbitrary truth assignment 7°;
. fori:=1,2,...,rdo
if T = ¢ then
return “¢ is satisfiable with 77;
else
Let ¢ be an unsatisfied clause in ¢ under T'; {All of

its literals are false under 7'.}

Pick any x of these literals at random;
Modify T' to make x true;
end if
. end for

. return “¢ is unsatisfiable”;
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3SAT vs. 2SAT Again

Note that if ¢ is unsatisfiable, the algorithm will answer

“unsatisfiable.”

The random walk algorithm needs expected exponential
time for 3SAT.

— In fact, it runs in expected O((1.333-- -+ €)™) time

with r = 3n,* much better than O(2").P

We will show immediately that it works well for 2SAT.

The state of the art as of 2006 is expected O(1.322™)
time for 3SAT and expected O(1.474™) time for 4SAT.¢

a@Use this setting per run of the algorithm.
PSchoning (1999).
“Kwama and Tamaki (2004); Rolf (2006).
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Random Walk Works for 2sAT?

Theorem 63 Suppose the random walk algorithm with
r = 2n® is applied to any satisfiable 2SAT problem with n
variables. Then a satisfying truth assignment will be
discovered with probability at least 0.5.

e Let T be a truth assignment such that T = ¢.

e Assume our starting 7 differs from 7' in i values.
— Their Hamming distance is z.

— Recall T' is arbitrary.

2Papadimitriou (1991).
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The Proof

Let t(i) denote the expected number of repetitions of the
flipping step® until a satisfying truth assignment is
found.

It can be shown that ¢(7) is finite.

t(0) = 0 because it means that 7' =T and hence T' = ¢.

If T+ T or any other satisfying truth assignment, then
we need to flip the coin at least once.

We flip a coin to pick among the 2 literals of a clause
not satisfied by the present T

At least one of the 2 literals is true under 7' because T

satisfies all clauses.
@That is, Statement 7.
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The Proof (continued)

e So we have at least 0.5 chance of moving closer to T.

e Thus
Hi— 1)+ (i + 1)
2

t(i) < +1

for 0 <7 <n.

— Inequality is used because, for example, 7" may differ
from T in both literals.

e [t must also hold that
ttn) <t(n—1)+1

because at 1 = n, we can only decrease 1.
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The Proof (continued)

e Now, put the necessary relations together:

0, (9)
< t@—1y;ar+n
< t(n—1)+1. (11)

+1, 0<i<n, (10)

e Technically, this is a one-dimensional random walk with
an absorbing barrier at ¢ = 0 and a reflecting barrier at

i = n (if we replace “<” with “=7).?

@The proof in the textbook does exactly that. But a student pointed
out difficulties with this proof technique on December 8, 2004. So our
proof here uses the original inequalities.
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The Proof (continued)

e Add up the relations for
2t(1),2t(2),2t(3),...,2t(n — 1),t(n) to obtain®

2t(1) + 2t(2
< t(0) +t(1)
) +

)+ -+ 2t(n— 1)+ t(n)

—|—2t() o4 2t(n—2)+2t(n — 1) +¢(
+2(n — 1

e Simplify it to yield

t(1) < 2n — 1. (12)

2 Adding up the relations for t(1),¢(2),¢(3),...,t(n—1) will also work,
thanks to Mr. Yen-Wu Ti (D91922010).
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The Proof (continued)

e Add up the relations for 2¢(2), 2t(3),...,2t(n — 1),t(n)
to obtain

2t(2) + -+ 2t(n — 1) +t(n)
< (1) +t(2) +2t(3) + -+ 2t(n —2) +2t(n — 1) +1(

+2(n —2) + 1.
e Simplify it to yield
t(2) <t()+2n—3<2n—1+2n—-3=4n—14

by Eq. (12) on p. 528.
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The Proof (continued)

e Continuing the process, we shall obtain
t(i) < 2in — i

e The worst upper bound happens when ¢ = n, in which

case
t(n) < n?.

e We conclude that

for 0 <1 <n.
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The Proof (concluded)

e So the expected number of steps is at most n?.

e The algorithm picks r = 2n?.

— This amounts to invoking the Markov inequality
(p. 519) with k = 2, resulting in a probability of 0.5.

e The proof does not yield a polynomial bound for 3SAT.?

2Contributed by Mr. Cheng-Yu Lee (R95922035) on November 8,
2006.
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Boosting the Performance

e We can pick r = 2mn? to have an error probability of

1
< —
—2m
by Markov’s inequality.
e Alternatively, with the same running time, we can run

the “r = 2n?” algorithm m times.

e The error probability is now reduced to

<27,
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Primality Tests
e PRIMES asks if a number N is a prime.

e The classic algorithm tests if k| N for k =2,3,...

e But it runs in (20082 N)/2) steps.
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Primality Tests (concluded)

e Suppose N = P() is a product of 2 distinct primes.

e The probability of success of the density attack (p. 468)

1S
2

VN

(a4
Y

when P =~ ().

e This probability is exponentially small in terms of the

input length log, V.
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The Fermat Test for Primality

Fermat’s “little” theorem (p. 471) suggests the following
primality test for any given number /V:

. Pick a number a randomly from {1,2,..., N —1};
. if a1 # 1 mod N then

return “/N is composite”;
. else

. return “N is (probably) a prime”;
. end if
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The Fermat Test for Primality (concluded)

Carmichael numbers are composite numbers that will
pass the Fermat test for all a € {1,2,..., N —1}.2

— The Fermat test will return “V is a prime” for all

Carmichael numbers V.

Unfortunately, there are infinitely many Carmichael

numbers.P

In fact, the number of Carmichael numbers less than N
exceeds N2/7 for N large enough.

e So the Fermat test is an incorrect algorithm for PRIMES.

aCarmichael (1910). Lo (1994) mentions an investment strategy based

on such numbers!
b Alford, Granville, and Pomerance (1992).
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Square Roots Modulo a Prime
e Equation 2?2 = a mod p has at most two (distinct) roots

by Lemma 59 (p. 476).
— The roots are called square roots.

— Numbers a with square roots and gcd(a,p) =1 are

called quadratic residues.

x They are

12 mod p,2* mod p, ..., (p — 1)* mod p.

e We shall show that a number either has two roots or has

none, and testing which is the case is trivial.?

@But no efficient deterministic general-purpose square-root-extracting

algorithms are known yet.
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Euler's Test

Lemma 64 (Euler) Let p be an odd prime and
a # 0 mod p.

1. If
a?P~D/2 =1 mod p,

2 _

then x a mod p has two roots.

aP~D/2 =£ 1 mod p,

aP~1/2 = _1 mod p

= a mod p has no roots.
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The Proof (continued)

Let r be a primitive root of p.

Fermat’s “little” theorem says 7?~! = 1 mod p, so

(p=1)/2

is a square root of 1.

In particular,
rP=1/2 =1 or —1 mod p.

But as r is a primitive root, »?=1/2 % 1 mod p.

Hence r?~1/2 = —1 mod p.
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The Proof (continued)

e Let a = ¥ mod p for some k.

e Then

1 =qaqP=1/2 = pklp=1/2 = [r(p_D/Qr = (—1)" mod p.

e So k& must be even.
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The Proof (continued)

e Suppose a = % mod p for some 1 < j < (p—1)/2.
e Then

aP~D/2 = piP=1) = 1 mod p.
e The two distinct roots of a are
rd, —rd (= ritP=1/2 mod p).

— If 7 = —r7 mod p, then 21/ = 0 mod p, which implies

rJ = 0 mod p, a contradiction as r is a primitive root.
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The Proof (continued)
As 1 <j<(p—1)/2, there are (p — 1)/2 such a’s.
Each such a = 7% mod p has 2 distinct square roots.

The square roots of all these a’s are distinct.

— The square roots of different a’s must be different.
Hence the set of square roots is {1,2,...,p—1}.

As a result,

a=r"modp,1<j<(p—1)/2,

exhaust all the quadratic residues.
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The Proof (concluded)

e Suppose a = r* ™! mod p now.

e Then it has no square roots because all the square roots

have been taken.

e Finally,

o (P—1)/2 = {Mp—l)/z

}2j—|—1

(_1>2j—|—1 —
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The Legendre Symbol* and Quadratic Residuacity Test
e By Lemma 64 (p. 538),

aP~1/2 mod p = +1

for a = 0 mod p.

e For odd prime p, define the Legendre symbol (a |p) as

.

0 if p|a,

(a|lp)=< 1 if a is a quadratic residue modulo p,

| —1 if a is a quadratic nonresidue modulo p.

e It is sometimes pronounced “a over p.”

2 Andrien-Marie Legendre (1752—-1833).
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The Legendre Symbol and Quadratic Residuacity Test
(concluded)

e Fuler’s test (p. 538) implies

a?~ /2 = (a|p) mod p

for any odd prime p and any integer a.

e Note that (ab|p) = (a|p)(b|p).
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Gauss's Lemma

Lemma 65 (Gauss) Let p and q be two distinct odd
primes. Then (q|p) = (=1)™, where m is the number of
residues in R={igmodp:1<i<(p—1)/2} that are
greater than (p — 1)/2.
e All residues in R are distinct.
— If ig = jg mod p, then p| (j — i) or p|q.

— But neither is possible.

e No two elements of R add up to p.

— If ig+ jqg = 0 mod p, then p| (i + j) or p|q.

— But neither is possible.
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The Proof (continued)

Replace each of the m elements a € R such that
a>(p—1)/2 by p— a.

— This is equivalent to performing —a mod p.
Call the resulting set of residues R’.
All numbers in R’ are at most (p — 1)/2.

In fact, R ={1,2,...,(p—1)/2} (see illustration next
page).
— Otherwise, two elements of R would add up to p,?

which has been shown to be impossible.

aBecause 1q = —jq mod p for some 1 #£ .
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p="7and g =>5.
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The Proof (concluded)

Alternatively, R = {+igmodp:1<i<(p—1)/2},

where exactly m of the elements have the minus sign.

Take the product of all elements in the two

representations of R.

So
(p—1)/2]' = (=1)"¢®»~V[(p — 1)/2]! mod p.

Because ged([(p — 1)/2]!,p) = 1, the above implies

1= (—1)"¢»"1/2 mod p.
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Legendre's Law of Quadratic Reciprocity®
e Let p and ¢ be two distinct odd primes.

e The next result says (p|q) and (q|p) are distinct if and
only if both p and ¢ are 3 mod 4.

Lemma 66 (Legendre (1785), Gauss)

(pla)(glp)=(-1)"=

2First stated by Euler in 1751. Legendre (1785) did not give a cor-
rect proof. Gauss proved the theorem when he was 19. He gave at
least 8 different proofs during his life. The 152nd proof appeared in
1963. A computer-generated formal proof was given in Russinoff (1990).
As of 2008, there have been 4 such proofs. Wiedijk (2008), “the Law
of Quadratic Reciprocity is the first nontrivial theorem that a student

encounters in the mathematics curriculum.”
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The Proof (continued)

e Sum the elements of R’ in the previous proof in mod?2.
e On one hand, this is just 327"/ mod 2.

e On the other hand, the sum equals

)

(p—1)/2 (p—1)/2 ;
= mp+ |q g T — P g {—QJ mod 2.
, P
=1

1=1

— m of the i¢g mod p are replaced by p — 7q mod p.
— But signs are irrelevant under mod?2.

— m is as in Lemma 65 (p. 546).

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 551



The Proof (continued)

e Ignore odd multipliers to make the sum equal

(p—1)/2 (p—1)/2 iq
m + 1 — {—J mod 2.

e Equate the above with Z(p ~Y/24 modulo 2 and simplify
to obtain

Z gJ mod 2.
i=1

(p—1)/2 .
;
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The Proof (continued)

9| jis the number of integral points below the

y=(q/p)x
for1<ax<(p—1)/2.

m

Gauss’s lemma (p. 546) says (¢ |p) = (—1)
Repeat the proof with p and ¢ reversed.

Then (p|q) = (—=1)", where m/ is the number of
integral points above the line y = (¢/p) x for

1<y<(¢—1)/2.
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The Proof (concluded)

o As a result,
(plo)(qlp) = (=)™

e But m + m/ is the total number of integral points in the

1, 251 x [1, 5] rectangle, which is

p—1qg—1
2 2
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Eisenstein’s Rectangle

(p-1)/2

Above, p=11,g=7, m =7, m' = 8.
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The Jacobi Symbol®

e The Legendre symbol only works for odd prime moduli.
e The Jacobi symbol (a|m) extends it to cases where m
1s not prime.

— a 1s sometimes called the numerator and m the

denominator.

e Define (a|1) = 1.

aCarl Jacobi (1804—-1851).
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The Jacobi Symbol (concluded)

e Let m = pips - - pr be the prime factorization of m.

¢ When m > 1is odd and ged(a, m) = 1, then

k

(a|m) =] [(a|p).

1=1

— Note that the Jacobi symbol equals £1.

— It reduces to the Legendre symbol when m is a prime.
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Properties of the Jacobi Symbol

The Jacobi symbol has the following properties when it is
defined.

1. (ab|m) = (a|m)(b|m).
2. (a|mims) = (a|mq)(a|ms).

. If a = b mod m, then (a|m) = (b|m).

3
4. (=1|m) = (=1)m=D/2 (by Lemma 65 on p. 546).

5. (2|m) = (=1)m"—1)/8a

. If a and m are both odd, then
(a|m)(m|a) = (=1)leDim=D/4,

2By Lemma 65 (p. 546) and some parity arguments.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 558



Properties of the Jacobi Symbol (concluded)

e These properties allow us to calculate the Jacobi symbol

without factorization.

— It will also yield the same result as Euler’s test (p.

538) when m is an odd prime.
e This situation is similar to the FEuclidean algorithm.

e Note also that (a|m)=1/(a|m) because (a|m)=+1.2

2Contributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on
December 6, 2011.
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Calculation of (2200 | 999)

(2200 | 999)

(202]999)

(21999)(101 | 999)
(—1)999°=1)/8 (101 | 999)
(—1)"*7°%(101999) = (101 | 999)
(—

(

(—

1)(100)(998)/4 999 | 101) = (—1)***%°(999 | 101)
999 [101) = (90]101) = (—1)1"~D/8(45101)

1)"?™(45]101) = — (45| 101)
—(—1)#HE00/4 (9011 45) = —(101 | 45) = —(11]45
— (=) (45111) = — (45| 11)
—(1]11) = —1.
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A Result Generalizing Proposition 10.3 in the
Textbook

Theorem 67 The group of set ®(n) under multiplication

mod n has a primitive root if and only if n is either 1, 2, 4,

pk, or Zpk for some nonnegative integer k and an odd prime

P.

This result is essential in the proof of the next lemma.
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The Jacobi Symbol and Primality Test?®

Lemma 68 If (M |N)= MWN=1/2mod N for all
M € ®(N), then N is a prime. (Assume N is odd.)

e Assume N = mp, where p is an odd prime, ged(m,p) = 1,

and m > 1 (not necessarily prime).
o Let r € ®(p) such that (r|p) = —1.

e The Chinese remainder theorem says that there is an
M € ®(N) such that

M = rmodp,
M = 1 modm.

aMr. Clement Hsiao (B4506061, R88526067) pointed out that the text-
book’s proof for Lemma 11.8 is incorrect in January 1999 while he was

a senior.
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The Proof (continued)

e By the hypothesis,
MW=D/2 — (M| N) = (M|p)(M|m)=—1mod N.

e Hence
MN-1/2 — _1 mod m.

e But because M = 1 mod m,
MWN=D/2 =1 mod m,

a contradiction.
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The Proof (continued)

e Second, assume that N = p®, where p is an odd prime
and a > 2.

e By Theorem 67 (p. 561), there exists a primitive root r

modulo p®.

e From the assumption,

2
MV = [M(N_”/Q} — (M|N)2 =1 mod N

for all M € ®(N).
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The Proof (continued)

e Asr € ®(N) (prove it), we have

r =1 — 1 mod N.

e As r’s exponent modulo N = p® is ¢(N) = p*~1(p — 1),

p*Hp—1) (N —1),

which implies that p| (N — 1).

e But this is impossible given that p | N.
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The Proof (continued)

Third, assume that N = mp®, where p is an odd prime,
ged(m,p) =1, m > 1 (not necessarily prime), and a is

even.
The proof mimics that of the second case.

By Theorem 67 (p. 561), there exists a primitive root r

modulo p®.

From the assumption,

2
MV = [M(N_”/Q} — (M|N)2 =1 mod N

for all M € ®(N).
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The Proof (continued)

e In particular,
MN=1 =1 mod p® (13)

for all M € ®(N).

e The Chinese remainder theorem says that there is an
M € ®(N) such that

M r mod p°,
M 1 mod m.

e Because M = r mod p® and Eq. (13),

rV 71 =1 mod p®.
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The Proof (concluded)

e As r’s exponent modulo N = p® is ¢(N) = p*~1(p — 1),
p*Hp—1) (N —1),
which implies that p| (N — 1).

e But this is impossible given that p | N.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 568



The Number of Witnesses to Compositeness

Theorem 69 (Solovay and Strassen (1977)) If N is an
odd composite, then (M | N)= MWN=Y/2 mod N for at most
half of M € ®(N).

e By Lemma 68 (p. 562) there is at least one a € ®(N)

such that (a|N) # o™V ~1/2 mod N.

o Let B=1{b1,ba,...,bi } C ®(N) be the set of all
distinct residues such that (b; | N) = bEN_D/Q mod V.

e LetaB={abmod N :i=1,2,...,k}.
e Clearly, aB C ®(N), too.
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The Proof (concluded)

e |aB|=k.
— ab; = ab; mod N implies N | a(b; — b;), which is
impossible because gcd(a, N) =1 and N > |b; — b, |.

e aBN B = () because

(aby) N ~D/2 = (N=D/2pN=DI2 o (0| NY (b | N) = (abs | N).

e Combining the above two results, we know

Bl 1Bl _ 5
s < [Buap| ~ %
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if N is even but N # 2 then
return “N is composite”;
else if N =2 then
return “/NV is a prime”;
end if
Pick M € {2,3,..., N — 1} randomly;
if gcd(M,N) > 1 then

return “/N is composite”;

1:
2:
3:
4:
5:
6:
7
8:
9:

else
if (M|N)=MPY"Y/2mod N then
return “N is (probably) a prime”;

—_ =
= O

else

—_ =

return “/N is composite”;
end if
: end if

—_ =
vk
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Analysis

e The algorithm certainly runs in polynomial time.

e There are no false positives (for COMPOSITENESS).

— When the algorithm says the number is composite, it

is always correct.
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Analysis (concluded)

e The probability of a false negative (again, for
COMPOSITENESS) is at most one half.

— Suppose the input is composite.

— By Theorem 69 (p. 569),

prob[ algorithm answers “no” | N is composite | < 0.5.

— Note that we are not referring to the probability that

N is composite when the algorithm says “no.”

e So it is a Monte Carlo algorithm for COMPOSITENESS.?

2Not PRIMES.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 573



The Improved Density Attack for COMPOSITENESS

Witnhesses to

compositeness of Witnesses to
N via common compositeness of
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Randomized Complexity Classes; RP

e Let N be a polynomial-time precise NTM that runs in
time p(n) and has 2 nondeterministic choices at each

step.
e N is a polynomial Monte Carlo Turing machine
for a language L if the following conditions hold:

— If x € L, then at least half of the 2P(") computation
paths of N on z halt with “yes” where n = |x|.

— If x € L, then all computation paths halt with “no.”

e The class of all languages with polynomial Monte Carlo
TMs is denoted RP (randomized polynomial time).?

2Adleman and Manders (1977).
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Comments on RP

e In analogy to Proposition 36 (p. 312), a “yes” instance

of an RP problem has many certificates (witnesses).

e There are no false positives.

e If we associate nondeterministic steps with flipping fair
coins, then we can phrase RP in the language of

probability.

— If z € L, then N(x) halts with “yes” with probability
at least 0.5 .

— If ¢ L, then N(x) halts with “no.”
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Comments on RP (concluded)

e The probability of false negatives is € < 0.5.

e But any constant between 0 and 1 can replace 0.5.

— Repeat the algorithm k£ = [— 1052 -| times and answer

“no” only if all the runs answer “no.”

— The probability of false negatives becomes €* < 0.5.
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Where RP Fits

e P C RP C NP.

— A deterministic TM is like a Monte Carlo TM except
that all the coin flips are ignored.

— A Monte Carlo TM is an NTM with more demands
on the number of accepting paths.

e COMPOSITENESS € RP:;* PRIMES € coRP;
PRIMES € RP.P

— In fact, PRIMES € P.€

RP U coRP is an alternative “plausible” notion of

efficient computation.

2Rabin (1976) and Solovay and Strassen (1977).

b Adleman and Huang (1987).
©Agrawal, Kayal, and Saxena (2002).
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