
tripartite matching

• We are given three sets B, G, and H, each containing n

elements.

• Let T ⊆ B ×G×H be a ternary relation.

• tripartite matching asks if there is a set of n triples

in T , none of which has a component in common.

– Each element in B is matched to a different element

in G and different element in H.

Theorem 45 (Karp (1972)) tripartite matching is

NP-complete.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 402

Related Problems

• We are given a family F = {S1, S2, . . . , Sn } of subsets

of a finite set U and a budget B.

• set covering asks if there exists a set of B sets in F

whose union is U .

• set packing asks if there are B disjoint sets in F .

• Assume |U | = 3m for some m ∈ N and |Si | = 3 for all i.

• exact cover by 3-sets asks if there are m sets in F

that are disjoint (so have U as their union).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 403

SET COVERING SET PACKING

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 404

Related Problems (concluded)

Corollary 46 (Karp (1972)) set covering, set

packing, and exact cover by 3-sets are all

NP-complete.

• Does set covering remain NP-complete when

|Si | = 3?a

• set covering is used to prove that the influence

maximization problem in social networks is

NP-complete.b

aContributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on

September 22, 2015.
bKempe, Kleinberg, and Tardos (2003).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 405

knapsack

• There is a set of n items.

• Item i has value vi ∈ Z
+ and weight wi ∈ Z

+.

• We are given K ∈ Z
+ and W ∈ Z

+.

• knapsack asks if there exists a subset

I ⊆ { 1, 2, . . . , n }
such that

∑
i∈I wi ≤ W and

∑
i∈I vi ≥ K.

– We want to achieve the maximum satisfaction within

the budget.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 406

knapsack Is NP-Completea

• knapsack ∈ NP: Guess an I and check the constraints.

• We shall reduce exact cover by 3-sets to knapsack,

in which vi = wi for all i and K = W .

• The simplified knapsack now asks if a subset of

v1, v2, . . . , vn adds up to exactly K.b

– Picture yourself as a radio DJ.

aKarp (1972).
bThis problem is called subset sum or 0-1 knapsack.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 407

The Proof (continued)

• The primary differences between the two problems are:a

– Sets vs. numbers.

– Union vs. addition.

• We are given a family F = {S1, S2, . . . , Sn } of size-3

subsets of U = { 1, 2, . . . , 3m }.
• exact cover by 3-sets asks if there are m disjoint

sets in F that cover the set U .

aThanks to a lively class discussion on November 16, 2010.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 408

The Proof (continued)

• Think of a set as a bit vector in { 0, 1 }3m.

– Assume m = 3.

– 110010000 means the set { 1, 2, 5 }.
– 001100010 means the set { 3, 4, 8 }.

• Assume there are n = 5 size-3 subsets in F .

• Our goal is
3m︷ ︸︸ ︷

1 1 · · · 1 .

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 409

The Proof (continued)

• A bit vector can also be seen as a binary number.

• Set union resembles addition:

001100010

+ 110010000

111110010

which denotes the set { 1, 2, 3, 4, 5, 8 }, as desired.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 410

The Proof (continued)

• Trouble occurs when there is carry:

010000000

+ 010000000

100000000

which denotes the wrong set { 1 }, not the correct { 2 }.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 411

The Proof (continued)

• Or consider

001100010

+ 001110000

011010010

which denotes the set { 2, 3, 5, 8 }, not the correct

{ 3, 4, 5, 8 }.a
aCorrected by Mr. Chihwei Lin (D97922003) on January 21, 2010.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 412

The Proof (continued)

• Carry may also lead to a situation where we obtain our

solution 1 1 · · · 1 with more than m sets in F .

• For example, with m = 3,

000100010

001110000

101100000

+ 000001101

111111111

• But the correct union result, { 1, 3, 4, 5, 6, 7, 8, 9 }, is not
an exact cover.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 413

The Proof (continued)

• And it uses 4 sets instead of the required m = 3.a

• To fix this problem, we enlarge the base just enough so

that there are no carries.b

• Because there are n vectors in total, we change the base

from 2 to n+ 1.

• Every positive integer N has a unique expression in base

b: There are b-adic digits 0 ≤ di < b such that

N =
k∑

i=0

dib
i, dk �= 0.

aThanks to a lively class discussion on November 20, 2002.
bYou cannot map ∪ to ∨ because knapsack requires + not ∨!

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 414

The Proof (continued)

• Set vi to be the integer corresponding to the bit vector

encoding Si in base n+ 1:

vi =
∑
j∈Si

1× (n+ 1)3m−j (3)

• Set

K =
3m−1∑
j=0

1× (n+ 1)j =

3m︷ ︸︸ ︷
1 1 · · · 1 (base n+ 1).

• Now in base n+ 1, if there is a set S such that

∑
i∈S vi =

3m︷ ︸︸ ︷
1 1 · · · 1, then every position must be

contributed by exactly one vi and |S | = m.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 415

The Proof (continued)

• For example, the case on p. 413 becomes

000100010

001110000

101100000

+ 000001101

102311111

in base n+ 1 = 6.

• As desired, it no longer meets the goal.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 416

The Proof (continued)

• Suppose F admits an exact cover, say {S1, S2, . . . , Sm }.
• Then picking I = { 1, 2, . . . ,m } clearly results in

v1 + v2 + · · ·+ vm =

3m︷ ︸︸ ︷
1 1 · · · 1 .

• It is important to note that the meaning of addition (+)

is independent of the base.a

– It is just regular addition.

– But an Si may give rise to different integers vi in Eq.

(3) on p. 415 under different bases.

aContributed by Mr. Kuan-Yu Chen (R92922047) on November 3,

2004.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 417

The Proof (concluded)

• On the other hand, suppose there exists an I such that

∑
i∈I

vi =

3m︷ ︸︸ ︷
1 1 · · · 1

in base n+ 1.

• The no-carry property implies that | I | = m and

{Si : i ∈ I }
is an exact cover.

The proof actually proves:

Corollary 47 subset sum (p. 407) is NP-complete.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 418

An Example

• Let m = 3, U = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }, and
S1 = { 1, 3, 4 },
S2 = { 2, 3, 4 },
S3 = { 2, 5, 6 },
S4 = { 6, 7, 8 },
S5 = { 7, 8, 9 }.

• Note that n = 5, as there are 5 Si’s.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 419

An Example (continued)

• Our reduction produces

K =
3×3−1∑
j=0

6j =

3×3︷ ︸︸ ︷
1 1 · · · 16 = 201553910,

v1 = 101100000 = 1734048,

v2 = 011100000 = 334368,

v3 = 010011000 = 281448,

v4 = 000001110 = 258,

v5 = 000000111 = 43.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 420

An Example (concluded)

• Note v1 + v3 + v5 = K because

101100000

010011000

+ 000000111

111111111

• Indeed,

S1 ∪ S3 ∪ S5 = { 1, 2, 3, 4, 5, 6, 7, 8, 9 },
an exact cover by 3-sets.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 421

bin packing

• We are given N positive integers a1, a2, . . . , aN , an

integer C (the capacity), and an integer B (the number

of bins).

• bin packing asks if these numbers can be partitioned

into B subsets, each of which has total sum at most C.

• Think of packing bags at the check-out counter.

Theorem 48 bin packing is NP-complete.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 422

bin packing (concluded)

• But suppose a1, a2, . . . , aN are randomly distributed

between 0 and 1.

• Let B be the smallest number of unit-capacity bins

capable of holding them.

• Then B can deviate from its average by more than t

with probability at most 2e−2t2/N .a

aDubhashi and Panconesi (2012).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 423

integer programming (ip)

• ip asks whether a system of linear inequalities with

integer coefficients has an integer solution.

• In contrast, linear programming (lp) asks whether a

system of linear inequalities with integer coefficients has

a rational solution.

– lp is solvable in polynomial time.a

aKhachiyan (1979).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 424

ip Is NP-Completea

• set covering can be expressed by the inequalities

Ax ≥ �1,
∑n

i=1 xi ≤ B, 0 ≤ xi ≤ 1, where

– xi = 1 if and only if Si is in the cover.

– A is the matrix whose columns are the bit vectors of

the sets S1, S2,

– �1 is the vector of 1s.

– The operations in Ax are standard matrix operations.

– The ith row of Ax is at least 1 means item i is

covered.

aKarp (1972); Papadimitriou (1981).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 425

ip Is NP-Complete (concluded)

• This shows ip is NP-hard.

• Many NP-complete problems can be expressed as an ip

problem.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 426

Christos Papadimitriou (1949–)

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 427

Easier or Harder?a

• Adding restrictions on the allowable problem instances

will not make a problem harder.

– We are now solving a subset of problem instances or

special cases.

– The independent set proof (p. 350) and the

knapsack proof (p. 407): equally hard.

– circuit value to monotone circuit value

(p. 299): equally hard.

– sat to 2sat (p. 330): easier.

aThanks to a lively class discussion on October 29, 2003.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 428

Easier or Harder? (concluded)

• Adding restrictions on the allowable solutions (the

solution space) may make a problem harder, equally

hard, or easier.

• It is problem dependent.

– min cut to bisection width (p. 382): harder.

– lp to ip (p. 424): harder.

– sat to naesat (equally hard by p. 342) and max

cut to max bisection (p. 380): equally hard.

– 3-coloring to 2-coloring (p. 391): easier.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 429

coNP and Function Problems

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 430

coNP

• NP is the class of problems that have succinct

certificates (recall Proposition 36 on p. 312).

• By definition, coNP is the class of problems whose

complement is in NP.

• coNP is therefore the class of problems that have

succinct disqualifications:

– A “no” instance of a problem in coNP possesses a

short proof of its being a “no” instance.

– Only “no” instances have such proofs.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 431

coNP (continued)

• Suppose L is a coNP problem.

• There exists a polynomial-time nondeterministic

algorithm M such that:

– If x ∈ L, then M(x) = “yes” for all computation

paths.

– If x �∈ L, then M(x) = “no” for some computation

path.

• Note that if we swap “yes” and “no” of M , the new

algorithm M ′ decides L̄ ∈ NP in the classic sense (p.

104).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 432

���

� ∉ �

���

��

���

��

���

� ∈ �

���

���

���

���

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 433

coNP (continued)

• So there are 3 major approaches to proving L ∈ coNP.

1. Prove L̄ ∈ NP.

2. Prove that only “no” instances possess short proofs.

3. Write an algorithm for it directly.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 434

coNP (concluded)

• Clearly P ⊆ coNP.

• It is not known if

P = NP ∩ coNP.

– Contrast this with

R = RE ∩ coRE

(see Proposition 10 on p. 150).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 435

Some coNP Problems

• validity ∈ coNP.

– If φ is not valid, it can be disqualified very succinctly:

a truth assignment that does not satisfy it.

• sat complement ∈ coNP.

– sat complement is the complement of sat.

– The disqualification is a truth assignment that

satisfies it.

• hamiltonian path complement ∈ coNP.

– The disqualification is a Hamiltonian path.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 436

Some coNP Problems (concluded)

• optimal tsp (d) ∈ coNP.

– optimal tsp (d) asks if the optimal tour has a total

distance of B, where B is an input.a

– The disqualification is a tour with a length < B.

aDefined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 437

A Nondeterministic Algorithm for sat complement
(See also p. 114)

φ is a boolean formula with n variables.

1: for i = 1, 2, . . . , n do

2: Guess xi ∈ { 0, 1 }; {Nondeterministic choice.}
3: end for

4: {Verification:}
5: if φ(x1, x2, . . . , xn) = 1 then

6: “no”;

7: else

8: “yes”;

9: end if

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 438

Analysis

• The algorithm decides language {φ : φ is unsatisfiable }.
– The computation tree is a complete binary tree of

depth n.

– Every computation path corresponds to a particular

truth assignment out of 2n.

– φ is unsatisfiable if and only if every truth

assignment falsifies φ.

– But every truth assignment falsifies φ if and only if

every computation path results in “yes.”

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 439

An Alternative Characterization of coNP

Proposition 49 Let L ⊆ Σ∗ be a language. Then L ∈ coNP

if and only if there is a polynomially decidable and

polynomially balanced relation R such that

L = {x : ∀y (x, y) ∈ R }.
(As on p. 311, we assume | y | ≤ |x |k for some k.)

• L̄ = {x : ∃y (x, y) ∈ ¬R }.
• Because ¬R remains polynomially balanced, L̄ ∈ NP by

Proposition 36 (p. 312).

• Hence L ∈ coNP by definition.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 440

coNP-Completeness

Proposition 50 L is NP-complete if and only if its

complement L̄ = Σ∗ − L is coNP-complete.

Proof (⇒; the ⇐ part is symmetric)

• Let L̄′ be any coNP language.

• Hence L′ ∈ NP.

• Let R be the reduction from L′ to L.

• So x ∈ L′ if and only if R(x) ∈ L.

• By the law of transposition, x �∈ L′ if and only if

R(x) �∈ L.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 441

coNP Completeness (concluded)

• So x ∈ L̄′ if and only if R(x) ∈ L̄.

• The same R is a reduction from L̄′ to L̄.

• This shows L̄ is coNP-hard.

• But L̄ ∈ coNP.

• This shows L̄ is coNP-complete.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 442

Some coNP-Complete Problems

• sat complement is coNP-complete.

• validity is coNP-complete.

– φ is valid if and only if ¬φ is not satisfiable.

– φ ∈ validity is valid if and only if

¬φ ∈ sat complement.

– The reduction from sat complement to validity

is hence easy.

• hamiltonian path complement is coNP-complete.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 443

Possible Relations between P, NP, coNP

1. P = NP = coNP.

2. NP = coNP but P �= NP.

3. NP �= coNP and P �= NP.

• This is the current “consensus.”a

aCarl Gauss (1777–1855), “I could easily lay down a multitude of such

propositions, which one could neither prove nor dispose of.”

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 444

The Primality Problem

• An integer p is prime if p > 1 and all positive numbers

other than 1 and p itself cannot divide it.

• primes asks if an integer N is a prime number.

• Dividing N by 2, 3, . . . ,
√
N is not efficient.

– The length of N is only logN , but
√
N = 20.5 logN .

– It is an exponential-time algorithm.

• A polynomial-time algorithm for primes was not found

until 2002 by Agrawal, Kayal, and Saxena!

• The running time is Õ(log7.5 N).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 445

1: if n = ab for some a, b > 1 then

2: return “composite”;

3: end if

4: for r = 2, 3, . . . , n − 1 do

5: if gcd(n, r) > 1 then

6: return “composite”;

7: end if

8: if r is a prime then

9: Let q be the largest prime factor of r − 1;

10: if q ≥ 4
√
r logn and n(r−1)/q �= 1 mod r then

11: break; {Exit the for-loop.}
12: end if

13: end if

14: end for{r − 1 has a prime factor q ≥ 4
√
r logn.}

15: for a = 1, 2, . . . , 2
√
r logn do

16: if (x − a)n �= (xn − a) mod (xr − 1) in Zn[x] then

17: return “composite”;

18: end if

19: end for

20: return “prime”; {The only place with “prime” output.}

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 446

The Primality Problem (concluded)

• Later, we will focus on efficient “randomized” algorithms

for primes (used in Mathematica, e.g.).

• NP ∩ coNP is the class of problems that have succinct

certificates and succinct disqualifications.

– Each “yes” instance has a succinct certificate.

– Each “no” instance has a succinct disqualification.

– No instances have both.

• We will see that primes ∈ NP ∩ coNP.a

– In fact, primes ∈ P as mentioned earlier.

aAnother important problem in that class is lp.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 447

Primitive Roots in Finite Fields

Theorem 51 (Lucas and Lehmer (1927)) a A number

p > 1 is a prime if and only if there is a number 1 < r < p

such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q �= 1 mod p for all prime divisors q of p− 1.

• This r is called the primitive root or generator.

• We will prove one direction of the theorem later.b

aFrançois Edouard Anatole Lucas (1842–1891); Derrick Henry

Lehmer (1905–1991).
bSee pp. 461ff.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 448

Derrick Lehmera (1905–1991)

aInventor of the linear congruential generator in 1951.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 449

Pratt’s Theorem

Theorem 52 (Pratt (1975)) primes ∈ NP ∩ coNP.

• primes is in coNP because a succinct disqualification is

a proper divisor.

– A proper divisor of a number n means n is not a

prime.

• Now suppose p is a prime.

• p’s certificate includes the r in Theorem 51 (p. 448).

– There may be multiple choices for r.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 450

The Proof (continued)

• Use recursive doubling to check if rp−1 = 1 mod p in

time polynomial in the length of the input, log2 p.

– r, r2, r4, . . . mod p, a total of ∼ log2 p steps.

• We also need all prime divisors of p− 1: q1, q2, . . . , qk.

– Whether r, q1, . . . , qk are easy to find is irrelevant.

• Checking r(p−1)/qi �= 1 mod p is also easy.

• Checking q1, q2, . . . , qk are all the divisors of p− 1 is easy.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 451

The Proof (concluded)

• We still need certificates for the primality of the qi’s.

• The complete certificate is recursive and tree-like:

C(p) = (r; q1, C(q1), q2, C(q2), . . . , qk, C(qk)). (4)

• We next prove that C(p) is succinct.

• As a result, C(p) can be checked in polynomial time.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 452

The Succinctness of the Certificate

Lemma 53 The length of C(p) is at most quadratic at

5 log22 p.

• This claim holds when p = 2 or p = 3.

• In general, p− 1 has k ≤ log2 p prime divisors

q1 = 2, q2, . . . , qk.

– Reason:

2k ≤
k∏

i=1

qi ≤ p− 1.

• Note also that, as q1 = 2,

k∏
i=2

qi ≤ p− 1

2
. (5)

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 453

The Proof (continued)

• C(p) requires:

– 2 parentheses;

– 2k < 2 log2 p separators (at most 2 log2 p bits);

– r (at most log2 p bits);

– q1 = 2 and its certificate 1 (at most 5 bits);

– q2, . . . , qk (at most 2 log2 p bits);a

– C(q2), . . . , C(qk).

aWhy?

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 454

The Proof (concluded)

• C(p) is succinct because, by induction,

|C(p) | ≤ 5 log2 p+ 5 + 5
k∑

i=2

log22 qi

≤ 5 log2 p+ 5 + 5

(
k∑

i=2

log2 qi

)2

≤ 5 log2 p+ 5 + 5 log22
p− 1

2
by inequality (5)

< 5 log2 p+ 5 + 5[(log2 p)− 1]2

= 5 log22 p+ 10− 5 log2 p ≤ 5 log22 p

for p ≥ 4.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 455

A Certificate for 23a

• Note that 5 is a primitive root modulo 23 and

23− 1 = 22 = 2× 11.b

• So

C(23) = (5; 2, C(2), 11, C(11)).

• Note that 2 is a primitive root modulo 11 and

11− 1 = 10 = 2× 5.

• So

C(11) = (2; 2, C(2), 5, C(5)).

aThanks to a lively discussion on April 24, 2008.
bOther primitive roots are 7, 10, 11, 14, 15, 17, 19, 20, 21.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 456

A Certificate for 23 (concluded)

• Note that 2 is a primitive root modulo 5 and

5− 1 = 4 = 22.

• So

C(5) = (2; 2, C(2)).

• In summary,

C(23) = (5; 2, C(2), 11, (2; 2, C(2), 5, (2; 2, C(2)))).

– In Mathematica, PrimeQCertificate[23] yields

{ 23, 5, { 2, { 11, 2, { 2, { 5, 2, { 2 }}}}}}

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 457

Turning the Proof into an Algorithma

• How to turn the proof into a polynomial-time

nondeterministic algorithm?

• First, guess a log2 p-bit number r.

• Then guess up to log2 p numbers q1, q2, . . . , qk each

containing at most log2 p bits.

• Then recursively do the same thing for each of the qi to

form a certificate (4) on p. 452.

• Finally check if the two conditions of Theorem 51 (p.

448) hold throughout the tree.

aContributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on

November 24, 2015.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 458

