Reductions and Completeness
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It is unworthy of excellent men
to lose hours like slaves in the labor of

computation.

— Gottfried Wilhelm von Leibniz (1646-1716)

I thought perhaps you might be members of
that lowly section of the university

known as the Sheffield Scientific School.

F. Scott Fitzgerald (1920), “May Day”
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Degrees of Difficulty

e When is a problem more difficult than another?

e B reduces to A if:

— There is a transformation R which for every problem

instance = of B yields a problem instance R(x) of A.?

— The answer to “R(z) € A?” is the same as the

answer to “x € B?”

— R is easy to compute.

e We say problem A is at least as hard as” problem B if B

reduces to A.

aSee also p. 141.
POr simply “harder than” for brevity.
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Reduction

> algorithm

Solving problem B by calling the algorithm for problem A

once and without further processing its answer.?

@More general reductions are possible, such as the Turing reduction
(1939) and the Cook reduction (1971).
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Degrees of Difficulty (concluded)

e This makes intuitive sense: If A is able to solve your

problem B after only a little bit of work of R, then A
must be at least as hard.

— If A is easy to solve, it combined with R (which is

also easy) would make B easy to solve, too.?

— So if B is hard to solve, A must be hard (if not
harder), too!

@Thanks to a lively class discussion on October 13, 2009.
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Comments?

Suppose B reduces to A via a transformation R.P

The input z is an instance of B.
The output R(x) is an instance of A.

R(xz) may not span all possible instances of A.°

— Some instances of A may never appear in the range
of R.

e But x must be a general instance for B.

2Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.

PSometimes, we say “B can be reduced to A.”
°R(x) may not be onto; Mr. Alexandr Simak (D98922040) on October

13, 20009.
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Is “Reduction” a Confusing Choice of Word?#

If B reduces to A, doesn’t that intuitively make A
smaller and simpler?

But our definition means just the opposite.
Our definition says in this case B is a special case of A.P

e Hence A is harder.

@Moore and Mertens (2011).
PSee also p. 144.
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Reduction between Languages

e Language L, is reducible to L, if there is a function R

computable by a deterministic TM in space O(logn).

e Furthermore, for all inputs =, x € Ly if and only if
R(ZU) c L2.

e R is said to be a (Karp) reduction from L; to L.
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Reduction between Languages (concluded)

Note that by Theorem 22 (p. 223), R runs in polynomial

time.

— In most cases, a polynomial-time R suffices for

proofs.?
e Suppose R is a reduction from L to Ls.

e Then solving “R(x) € L2?” is an algorithm for solving
= Ll?nb

2In fact, unless stated otherwise, we will only require that the reduc-

tion R run in polynomial time.
POf course, it may not be an optimal one.
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A Paradox?

Degree of difficulty is not defined in terms of absolute

complexity.

So a language B € TIME(n%?) may be “easier” than a
language A € TIME(n?).

— Again, this happens when B reduces to A.

But isn’t this a contradiction if the best algorithm for B
requires n”? steps?

That is, how can a problem requiring n”? steps be
reducible to a problem solvable in n® steps?
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Paradox Resolved
e The so-called contradiction is the result of flawed logic.

e Suppose we solve the problem “x € B?” via “R(x) € A?”

e We must consider the time spent by R(z) and its length
| B(x) |
— Because R(x) (not x) is solved by A.
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HAMILTONIAN PATH

e A Hamiltonian path of a graph is a path that visits
every node of the graph exactly once.

e Suppose graph GG has n nodes: 1,2,...,n.

e A Hamiltonian path can be expressed as a permutation
mof {1,2,...,n} such that

— 7(i) = j means the ith position is occupied by node j.

— (m(i),w(i+ 1)) e Gfori=1,2,...,n— 1.
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HAMILTONIAN PATH (concluded)

e HAMILTONIAN PATH asks if a graph has a Hamiltonian
path.
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Reduction of HAMILTONIAN PATH to SAT

Given a graph G, we shall construct a CNF R(G) such
that R(G) is satisfiable if and only if G has a

Hamiltonian path.

R(G) has n? boolean variables z;;, 1 <i,j < n.

L5 IMeans

the ith position in the Hamiltonian path is

occupied by node j.

Our reduction will produce clauses.
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T12 = T21 = T34 = T4 = T53 = Teg = T76 = Ly = Lo7 = 1;
(1) =2,72)=1,73) =4,7(4) =5,7(5) =3,7(6) =
9,7(7) =6,7(8) =8,7(9) =T.
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The Clauses of R(G) and Their Intended Meanings

1. Each node 5 must appear in the path.

e T1; Vx2; V-V x,; for each j.

. No node j appears twice in the path.
o —x;; V(= —(xij Axgy)) for all 4,5, k with i # k.

. Every position ¢ on the path must be occupied.

e ;1 VxioV---Vxin for each 1.

. No two nodes j and k occupy the same position in the path.
o x;; V ﬁxik(z ﬁ(aﬁij A\ azzk)) for all 7, 7, k with j # k.

. Nonadjacent nodes 2 and 7 cannot be adjacent in the path.

o Xy V Try1,(= (Tki A xks1,;)) for all (i,7) € E and
k=1,2,....n—1.
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The Proof

R(G) contains O(n?) clauses.

R(G) can be computed efficiently (simple exercise).
Suppose T' = R(G).

From the 1st and 2nd types of clauses, for each node j

there is a unique position ¢ such that 7' = z;;.

From the 3rd and 4th types of clauses, for each position
i there is a unique node j such that T' |= z;;.

So there is a permutation 7 of the nodes such that
m(i) = j if and only if T' = z;;.
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The Proof (concluded)

e The 5th type of clauses furthermore guarantee that
(w(1),7(2),...,7(n)) is a Hamiltonian path.

e Conversely, suppose G has a Hamiltonian path

where 7 is a permutation.

e Clearly, the truth assignment
T(xz;;) = true if and only if 7(i) = j

satisfies all clauses of R(G).
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A Comment?

e An answer to “Is R(G) satisfiable?” answers the

question “Is G Hamiltonian?”

e But a “yes” does not give a Hamiltonian path for G.

— Providing a witness is not a requirement of reduction.

e A “yes” to “Is R(G) satisfiable?” plus a satisfying truth

assignment does provide us with a Hamiltonian path for

G.

2Contributed by Ms. Amy Liu (J94922016) on May 29, 2006.
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Reduction of REACHABILITY to CIRCUIT VALUE
e Note that both problems are in P.

e Given a graph G = (V, F), we shall construct a
variable-free circuit R(G).

e The output of R(G) is true if and only if there is a path

from node 1 to node n in G.

e Idea: the Floyd-Warshall algorithm.
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The Gates
The gates are
— gijr With 1 <4, <nand 0 <k <n.
— hijr with 1 <4,j5,k < n.

gijk: There is a path from node ¢ to node j without
passing through a node bigger than k.

hiji: There is a path from node i to node j passing
through k£ but not any node bigger than k.

Input gate g;;0 = true if and only if i = j or (¢,5) € E.
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The Construction

hiji 1s an AND gate with predecessors g; i r—1 and
9k,j,k—1, where k = 1, 2, e ..y .

gijk 1s an OR gate with predecessors g; j r—1 and h; j i,

where k =1,2,...,n.
Jinn 18 the output gate.

Interestingly, R(G) uses no — gates.

— It is a monotone circuit.
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Reduction of CIRCUIT SAT to SAT

Given a circuit C', we will construct a boolean expression

R(C) such that R(C) is satisfiable if and only if C is.
— R(C') will turn out to be a CNF.

— R(C) is basically a depth-2 circuit; furthermore, each
gate has out-degree 1.

The variables of R(C) are those of C plus g for each
gate g of C.

— The g’s propagate the truth values for the CNF.
Each gate of C' will be turned into equivalent clauses.

Recall that clauses are Aed together by definition.
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The Clauses of R(C)

g is a variable gate x: Add clauses (—g V z) and (g V —x).
e Meaning: g & .

g is a true gate: Add clause (g).
e Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (—g).
e Meaning: g must be false to make R(C') true.

g is a — gate with predecessor gate h: Add clauses
(g V —h) and (g V h).

e Meaning: g & —h.
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The Clauses of R(C') (concluded)

g is a V gate with predecessor gates h and h': Add
clauses (=h V g), (-h' V g), and (h V A’ V —g).

e Meaning: g < (hV H).
g is a N gate with predecessor gates h and h': Add
clauses (—g V h), (—g V h'), and (=h V =h' V g).
e Meaning: g < (h A R).
g is the output gate: Add clause (g).
e Meaning: g must be true to make R(C) true.

Note: If gate g feeds gates hq, ho, ..., then variable g
appears in the clauses for hq, ho, ... in R(C).
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An Example

(hl p— 213‘1) A\ (hg = .I‘Q) AN (hg p— 213‘3) A\ (h4 p— 213‘4)

g1 (hi Ah2)] A g2 < (h3V hy)]
(93 (91 AN g2) | A (94 & —g2)
g5 < (93 V g4) | N gs.
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An Example (concluded)

In general, the result is a CNF.

The CNF has size proportional to the circuit’s number

of gates.

The CNF adds new variables to the circuit’s original

input variables.

Had we used the idea on p. 193 for the reduction, the
resulting formula may have an exponential length

because of the copying.?

aContributed by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.
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Composition of Reductions

Proposition 25 If Ri5 is a reduction from Ly to Lo and
Ro3 is a reduction from Lo to Ls, then the composition

R15 0 Ro3 15 a reduction from Ly to Ls.

e So reducibility is transitive.
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Completeness®

As reducibility is transitive, problems can be ordered
with respect to their difficulty.

Is there a maximal element (the hardest problem)?

It is not obvious that there should be a maximal

element.
— Many infinite structures (such as integers and real

numbers) do not have maximal elements.

Surprisingly, most of the complexity classes that we have

seen so far have maximal elements!

2Cook (1971); Levin (1973); Post (1944).
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Completeness (concluded)

e Let C be a complexity class and L € C.

e [ is C-complete if every L’ € C can be reduced to L.
— Most of the complexity classes we have seen so far

have complete problems!

e Complete problems capture the difficulty of a class

because they are the hardest problems in the class.?

@See also p. 155.
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Hardness

Let C be a complexity class.

L is C-hard if every L’ € C can be reduced to L.

It is not required that L € C.

If L is C-hard, then by definition, every C-complete

problem can be reduced to L.?

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15,
2003.
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lllustration of Completeness and Hardness
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Closedness under Reductions

e A class C is closed under reductions if whenever L is
reducible to L’ and L' € C, then L € C.

e It is easy to show that P, NP, coNP, L, NL, PSPACE,
and EXP are all closed under reductions.

e I is not closed under reductions.?

2Balcdzar, Diaz, and Gabarré (1988).

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 276



Complete Problems and Complexity Classes

Proposition 26 Let C' and C be two complexity classes
such that C' C C. Assume C' is closed under reductions and
L is C-complete. Then C =C’ if and only if L € C’.

e Suppose L € C’ first.

e Every language A € C reduces to L € C’.

e Because C’ is closed under reductions, A € C’.
Hence C C C'.

As C' C C, we conclude that C = C’.
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The Proof (concluded)

e On the other hand, suppose C = C’.
e As L is C-complete, L € C.

e Thus, trivially, L € C’.
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Two Important Corollaries

Proposition 26 implies the following.

Corollary 27 P = NP if and only if an NP-complete
problem in P.

Corollary 28 L = P if and only if a P-complete problem 1is
wn L.
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Complete Problems and Complexity Classes, Again

Proposition 29 Let C' and C be two complexity classes

closed under reductions. If L is complete for both C and C’,
then C = C'.

e All languages A € C reduce to L € C and L € C'.
e Since C’ is closed under reductions, A € C’.
e Hence C CC'.

e The proof for C' C C is symmetric.
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Table of Computation

Let M = (K, X, 46, s) be a single-string polynomial-time
deterministic TM deciding L.

Its computation on input x can be thought of as a

|2 |* x | z|* table, where | x |¥ is the time bound.

— It is essentially a sequence of configurations.
Rows correspond to time steps 0 to |z |¥ — 1.
Columns are positions in the string of M.

The (7, 7)th table entry represents the contents of
position j of the string after 7 steps of computation.
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Some Conventions To Simplify the Table
M halts after at most |z |* — 2 steps.

Assume a large enough k to make it true for |z | > 2.

Pad the table with | |s so that each row has length |z |*.

— The computation will never reach the right end of
the table for lack of time.

If the cursor scans the jth position at time ¢ when M is
at state ¢ and the symbol is o, then the (i, j)th entry is

a new symbol oy.
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Some Conventions To Simplify the Table (continued)

Y

o If g is “yes” or “no,” simply use “yes” or “no” instead of

Ogq-

Modify M so that the cursor starts not at > but at the
first symbol of the input.

The cursor never visits the leftmost > by telescoping
two moves of M each time the cursor is about to move
to the leftmost >.

So the first symbol in every row is a > and not a >,.
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Some Conventions To Simplify the Table (concluded)

e Suppose M has halted before its time bound of |z |*, so

that “yes” or “no” appears at a row before the last.
e Then all subsequent rows will be identical to that row.

e M accepts z if and only if the (|z |¥ — 1, j)th entry is

“yes” for some position j.
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Comments

e Each row is essentially a configuration.

e If the input z = 010001, then the first row is

Exk

,>osiooo1|_||_|---|_]

e A typical row looks like

k
|z |

A

~

r>1o1ooqo111o1oo| |- |
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Comments (concluded)

e The last rows must look like

Xk
7\

Ve

[> o o e “yes

’7 . . .

e Three out of the table’s 4 borders are known:

>abcdefl

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 286



