Reductions and Completeness

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 244

It is unworthy of excellent men
to lose hours like slaves in the labor of

computation.

— Gottfried Wilhelm von Leibniz (1646-1716)

I thought perhaps you might be members of
that lowly section of the university

known as the Sheffield Scientific School.

F. Scott Fitzgerald (1920), “May Day”

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 245

Degrees of Difficulty

e When is a problem more difficult than another?

e B reduces to A if:

— There is a transformation R which for every problem

instance = of B yields a problem instance R(x) of A.?

— The answer to “R(z) € A?” is the same as the

answer to “x € B?”

— R is easy to compute.

e We say problem A is at least as hard as” problem B if B

reduces to A.

aSee also p. 141.
POr simply “harder than” for brevity.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 246

Reduction

> algorithm

Solving problem B by calling the algorithm for problem A

once and without further processing its answer.?

@More general reductions are possible, such as the Turing reduction
(1939) and the Cook reduction (1971).

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 247

Degrees of Difficulty (concluded)

e This makes intuitive sense: If A is able to solve your

problem B after only a little bit of work of R, then A
must be at least as hard.

— If A is easy to solve, it combined with R (which is

also easy) would make B easy to solve, too.?

— So if B is hard to solve, A must be hard (if not
harder), too!

@Thanks to a lively class discussion on October 13, 2009.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 248

Comments?

Suppose B reduces to A via a transformation R.P

The input z is an instance of B.
The output R(x) is an instance of A.

R(xz) may not span all possible instances of A.°

— Some instances of A may never appear in the range
of R.

e But x must be a general instance for B.

2Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.

PSometimes, we say “B can be reduced to A.”
°R(x) may not be onto; Mr. Alexandr Simak (D98922040) on October

13, 20009.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 249

Is “Reduction” a Confusing Choice of Word?#

If B reduces to A, doesn’t that intuitively make A
smaller and simpler?

But our definition means just the opposite.
Our definition says in this case B is a special case of A.P

e Hence A is harder.

@Moore and Mertens (2011).
PSee also p. 144.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 250

Reduction between Languages

e Language L, is reducible to L, if there is a function R

computable by a deterministic TM in space O(logn).

e Furthermore, for all inputs =, x € Ly if and only if
R(ZU) c L2.

e R is said to be a (Karp) reduction from L; to L.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 251

Reduction between Languages (concluded)

Note that by Theorem 22 (p. 223), R runs in polynomial

time.

— In most cases, a polynomial-time R suffices for

proofs.?
e Suppose R is a reduction from L to Ls.

e Then solving “R(x) € L2?” is an algorithm for solving
= Ll?nb

2In fact, unless stated otherwise, we will only require that the reduc-

tion R run in polynomial time.
POf course, it may not be an optimal one.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 252

A Paradox?

Degree of difficulty is not defined in terms of absolute

complexity.

So a language B € TIME(n%?) may be “easier” than a
language A € TIME(n?).

— Again, this happens when B reduces to A.

But isn’t this a contradiction if the best algorithm for B
requires n”? steps?

That is, how can a problem requiring n”? steps be
reducible to a problem solvable in n® steps?

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 253

Paradox Resolved
e The so-called contradiction is the result of flawed logic.

e Suppose we solve the problem “x € B?” via “R(x) € A?”

e We must consider the time spent by R(z) and its length
| B(x) |
— Because R(x) (not x) is solved by A.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 254

HAMILTONIAN PATH

e A Hamiltonian path of a graph is a path that visits
every node of the graph exactly once.

e Suppose graph GG has n nodes: 1,2,...,n.

e A Hamiltonian path can be expressed as a permutation
mof {1,2,...,n} such that

— 7(i) = j means the ith position is occupied by node j.

— (m(i),w(i+ 1)) e Gfori=1,2,...,n— 1.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 255

HAMILTONIAN PATH (concluded)

e HAMILTONIAN PATH asks if a graph has a Hamiltonian
path.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 256

Reduction of HAMILTONIAN PATH to SAT

Given a graph G, we shall construct a CNF R(G) such
that R(G) is satisfiable if and only if G has a

Hamiltonian path.

R(G) has n? boolean variables z;;, 1 <i,j < n.

L5 IMeans

the ith position in the Hamiltonian path is

occupied by node j.

Our reduction will produce clauses.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 257

T12 = T21 = T34 = T4 = T53 = Teg = T76 = Ly = Lo7 = 1;
(1) =2,72)=1,73) =4,7(4) =5,7(5) =3,7(6) =
9,7(7) =6,7(8) =8,7(9) =T.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 258

The Clauses of R(G) and Their Intended Meanings

1. Each node 5 must appear in the path.

e T1; Vx2; V-V x,; for each j.

. No node j appears twice in the path.
o —x;; V(= —(xij Axgy)) for all 4,5, k with i # k.

. Every position ¢ on the path must be occupied.

e ;1 VxioV---Vxin for each 1.

. No two nodes j and k occupy the same position in the path.
o x;; V ﬁxik(z ﬁ(aﬁij A\ azzk)) for all 7, 7, k with j # k.

. Nonadjacent nodes 2 and 7 cannot be adjacent in the path.

o Xy V Try1,(= (Tki A xks1,;)) for all (i,7) € E and
k=1,2,....n—1.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 259

The Proof

R(G) contains O(n?) clauses.

R(G) can be computed efficiently (simple exercise).
Suppose T' = R(G).

From the 1st and 2nd types of clauses, for each node j

there is a unique position ¢ such that 7' = z;;.

From the 3rd and 4th types of clauses, for each position
i there is a unique node j such that T' |= z;;.

So there is a permutation 7 of the nodes such that
m(i) = j if and only if T' = z;;.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 260

The Proof (concluded)

e The 5th type of clauses furthermore guarantee that
(w(1),7(2),...,7(n)) is a Hamiltonian path.

e Conversely, suppose G has a Hamiltonian path

where 7 is a permutation.

e Clearly, the truth assignment
T(xz;;) = true if and only if 7(i) = j

satisfies all clauses of R(G).

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 261

A Comment?

e An answer to “Is R(G) satisfiable?” answers the

question “Is G Hamiltonian?”

e But a “yes” does not give a Hamiltonian path for G.

— Providing a witness is not a requirement of reduction.

e A “yes” to “Is R(G) satisfiable?” plus a satisfying truth

assignment does provide us with a Hamiltonian path for

G.

2Contributed by Ms. Amy Liu (J94922016) on May 29, 2006.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 262

Reduction of REACHABILITY to CIRCUIT VALUE
e Note that both problems are in P.

e Given a graph G = (V, F), we shall construct a
variable-free circuit R(G).

e The output of R(G) is true if and only if there is a path

from node 1 to node n in G.

e Idea: the Floyd-Warshall algorithm.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 263

The Gates
The gates are
— gijr With 1 <4, <nand 0 <k <n.
— hijr with 1 <4,j5,k < n.

gijk: There is a path from node ¢ to node j without
passing through a node bigger than k.

hiji: There is a path from node i to node j passing
through k£ but not any node bigger than k.

Input gate g;;0 = true if and only if i = j or (¢,5) € E.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 264

The Construction

hiji 1s an AND gate with predecessors g; i r—1 and
9k,j,k—1, where k = 1, 2, e ..y .

gijk 1s an OR gate with predecessors g; j r—1 and h; j i,

where k =1,2,...,n.
Jinn 18 the output gate.

Interestingly, R(G) uses no — gates.

— It is a monotone circuit.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 265

Reduction of CIRCUIT SAT to SAT

Given a circuit C', we will construct a boolean expression

R(C) such that R(C) is satisfiable if and only if C is.
— R(C') will turn out to be a CNF.

— R(C) is basically a depth-2 circuit; furthermore, each
gate has out-degree 1.

The variables of R(C) are those of C plus g for each
gate g of C.

— The g’s propagate the truth values for the CNF.
Each gate of C' will be turned into equivalent clauses.

Recall that clauses are Aed together by definition.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 266

The Clauses of R(C)

g is a variable gate x: Add clauses (—g V z) and (g V —x).
e Meaning: g & .

g is a true gate: Add clause (g).
e Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (—g).
e Meaning: g must be false to make R(C') true.

g is a — gate with predecessor gate h: Add clauses
(g V —h) and (g V h).

e Meaning: g & —h.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 267

The Clauses of R(C') (concluded)

g is a V gate with predecessor gates h and h': Add
clauses (=h V g), (-h' V g), and (h V A’ V —g).

e Meaning: g < (hV H).
g is a N gate with predecessor gates h and h': Add
clauses (—g V h), (—g V h'), and (=h V =h' V g).
e Meaning: g < (h A R).
g is the output gate: Add clause (g).
e Meaning: g must be true to make R(C) true.

Note: If gate g feeds gates hq, ho, ..., then variable g
appears in the clauses for hq, ho, ... in R(C).

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 268

An Example

(hl p— 213‘1) A\ (hg = .I‘Q) AN (hg p— 213‘3) A\ (h4 p— 213‘4)

g1 (hi Ah2)] A g2 < (h3V hy)]
(93 (91 AN g2) | A (94 & —g2)
g5 < (93 V g4) | N gs.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 269

An Example (concluded)

In general, the result is a CNF.

The CNF has size proportional to the circuit’s number

of gates.

The CNF adds new variables to the circuit’s original

input variables.

Had we used the idea on p. 193 for the reduction, the
resulting formula may have an exponential length

because of the copying.?

aContributed by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 270

Composition of Reductions

Proposition 25 If Ri5 is a reduction from Ly to Lo and
Ro3 is a reduction from Lo to Ls, then the composition

R15 0 Ro3 15 a reduction from Ly to Ls.

e So reducibility is transitive.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 271

Completeness®

As reducibility is transitive, problems can be ordered
with respect to their difficulty.

Is there a maximal element (the hardest problem)?

It is not obvious that there should be a maximal

element.
— Many infinite structures (such as integers and real

numbers) do not have maximal elements.

Surprisingly, most of the complexity classes that we have

seen so far have maximal elements!

2Cook (1971); Levin (1973); Post (1944).

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 272

Completeness (concluded)

e Let C be a complexity class and L € C.

e [is C-complete if every L’ € C can be reduced to L.
— Most of the complexity classes we have seen so far

have complete problems!

e Complete problems capture the difficulty of a class

because they are the hardest problems in the class.?

@See also p. 155.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 273

Hardness

Let C be a complexity class.

L is C-hard if every L’ € C can be reduced to L.

It is not required that L € C.

If L is C-hard, then by definition, every C-complete

problem can be reduced to L.?

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15,
2003.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 274

lllustration of Completeness and Hardness

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 275

Closedness under Reductions

e A class C is closed under reductions if whenever L is
reducible to L’ and L' € C, then L € C.

e It is easy to show that P, NP, coNP, L, NL, PSPACE,
and EXP are all closed under reductions.

e I is not closed under reductions.?

2Balcdzar, Diaz, and Gabarré (1988).

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 276

Complete Problems and Complexity Classes

Proposition 26 Let C' and C be two complexity classes
such that C' C C. Assume C' is closed under reductions and
L is C-complete. Then C =C’ if and only if L € C’.

e Suppose L € C’ first.

e Every language A € C reduces to L € C’.

e Because C’ is closed under reductions, A € C’.
Hence C C C'.

As C' C C, we conclude that C = C’.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 277

The Proof (concluded)

e On the other hand, suppose C = C’.
e As L is C-complete, L € C.

e Thus, trivially, L € C’.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 278

Two Important Corollaries

Proposition 26 implies the following.

Corollary 27 P = NP if and only if an NP-complete
problem in P.

Corollary 28 L = P if and only if a P-complete problem 1is
wn L.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 279

Complete Problems and Complexity Classes, Again

Proposition 29 Let C' and C be two complexity classes

closed under reductions. If L is complete for both C and C’,
then C = C'.

e All languages A € C reduce to L € C and L € C'.
e Since C’ is closed under reductions, A € C’.
e Hence C CC'.

e The proof for C' C C is symmetric.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 280

Table of Computation

Let M = (K, X, 46, s) be a single-string polynomial-time
deterministic TM deciding L.

Its computation on input x can be thought of as a

|2 |* x | z|* table, where | x |¥ is the time bound.

— It is essentially a sequence of configurations.
Rows correspond to time steps 0 to |z |¥ — 1.
Columns are positions in the string of M.

The (7, 7)th table entry represents the contents of
position j of the string after 7 steps of computation.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 281

Some Conventions To Simplify the Table
M halts after at most |z |* — 2 steps.

Assume a large enough k to make it true for |z | > 2.

Pad the table with | |s so that each row has length |z |*.

— The computation will never reach the right end of
the table for lack of time.

If the cursor scans the jth position at time ¢ when M is
at state ¢ and the symbol is o, then the (i, j)th entry is

a new symbol oy.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 282

Some Conventions To Simplify the Table (continued)

Y

o If g is “yes” or “no,” simply use “yes” or “no” instead of

Ogq-

Modify M so that the cursor starts not at > but at the
first symbol of the input.

The cursor never visits the leftmost > by telescoping
two moves of M each time the cursor is about to move
to the leftmost >.

So the first symbol in every row is a > and not a >,.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 283

Some Conventions To Simplify the Table (concluded)

e Suppose M has halted before its time bound of |z |*, so

that “yes” or “no” appears at a row before the last.
e Then all subsequent rows will be identical to that row.

e M accepts z if and only if the (|z |¥ — 1, j)th entry is

“yes” for some position j.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 284

Comments

e Each row is essentially a configuration.

e If the input z = 010001, then the first row is

Exk

,>osiooo1|_||_|---|_]

e A typical row looks like

k
|z |

A

~

r>1o1ooqo111o1oo| |- |

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 285

Comments (concluded)

e The last rows must look like

Xk
7\

Ve

[> o o e “yes

’7 . . .

e Three out of the table’s 4 borders are known:

>abcdefl

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 286

