The Power of Monotone Circuits

Monotone circuits can only compute monotone boolean

functions.

They are powerful enough to solve a P-complete
problem: MONOTONE CIRCUIT VALUE (p. 317).

There are NP-complete problems that are not monotone;

they cannot be computed by monotone circuits at all.

There are NP-complete problems that are monotone;

they can be computed by monotone circuits.

— HAMILTONIAN PATH and CLIQUE.
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CLIQUE,, ;

CLIQUE,, j is the boolean function deciding whether a
graph G = (V, F) with n nodes has a clique of size k.

The input gates are the (g’) entries of the adjacency

matrix of (.

— Gate g;; 1s set to true if the associated undirected

edge {1, } exists.
CLIQUE,, j Is a monotone function.
Thus it can be computed by a monotone circuit.

This does not rule out that nonmonotone circuits for

CLIQUE,, , may use fewer gates, however.
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Crude Circuits

e One possible circuit for CLIQUE,, ;, does the following.

1. For each S C V with | S| = k, there is a circuit with
O(k?) A-gates testing whether S forms a clique.

2. We then take an OR of the outcomes of all the (Z)
subsets 51, 55,..., S(n>.
k

e This is a monotone circuit with O(k*(})) gates, which is

exponentially large unless k£ or n — k is a constant.

e A crude circuit CC(Xq, X, ..., X,,) tests if there is
an X; C V that forms a clique.

— The above-mentioned circuit is CC(Sy, So, ..., S(n>).
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The Proof: Positive Examples

Analysis will be applied to only positive examples and

negative examples as inputs.

A positive example is a graph that has (I;) edges

connecting k nodes in all possible ways.
There are (Z) such graphs.

They all should elicit a true output from CLIQUE,, .
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The Proof: Negative Examples

e Color the nodes with k£ — 1 different colors and join by
an edge any two nodes that are colored differently.

e There are (k — 1)™ such graphs.

e They all should elicit a false output from CLIQUE,, .

— Each set of £ nodes must have 2 identically colored

nodes; hence there is no edge between them.
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Positive and Negative Examples with £ =5

A positive example A negative example

©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 775



Sunflowers
o FixpeZt and ¢ € Z™.

e A sunflower is a family of p sets { Py, P, ..., P,}, called

petals, each of cardinality at most /.

e Furthermore, all pairs of sets in the family must have

the same intersection (called the core of the sunflower).

oy
W
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A Sample Sunflower

{{1,2,3,5},{1,2,6,9},{0,1,2,11},
{1,2,12,13},{1,2,8,10},{1,2,4, 7} }.
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The Erdos-Rado Lemma

Lemma 90 Let Z be a family of more than M = (p — 1)%/!
nonempty sets, each of cardinality ¢ or less. Then Z must

contain a sunflower (with p petals).

e Induction on /.

e For ¢ =1, p different singletons form a sunflower (with

an empty core).
e Suppose £ > 1.

e Consider a maximal subset D C Z of disjoint sets.

— Every set in Z — D intersects some set in D.

©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 778



The Proof of the Erdés-Rado Lemma (continued)

For example,
z = {{1,2,3,5},{1,3,6,9},{0,4,8,11},
{4,5,6,7},{5,8,9,10},{6,7,9,11}},
{{1,2,3,5},{0,4,8,11}}.
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The Proof of the Erdés-Rado Lemma (continued)

e Suppose D contains at least p sets.

— D constitutes a sunflower with an empty core.

e Suppose D contains fewer than p sets.
Let C be the union of all sets in D.
[Cl<(p—1)L
C' intersects every set in Z by D’s maximality.

There is a d € C that intersects more than
ﬁ = (p—1)*"1(¢f —1)! sets in Z.

— Consider Z2' ={Z —{d} : Z € Z,d € Z}.
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The Proof of the Erdés-Rado Lemma (concluded)

e (continued)
— Z’ has more than M’ = (p — 1)*71(¢ — 1)! sets.
— M’ is just M with ¢ replaced with ¢ — 1.

— Z’ contains a sunflower by induction, say
{P1, Ps,...,Pp}.

— Now,

{PyuU{d}, P,UA{d},..., P,U{d}}

is a sunflower in Z.
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Paul Erd6s (1913-1996)
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Comments on the Erdos-Rado Lemma
A family of more than M sets must contain a sunflower.

Plucking a sunflower means replacing the sets in the

sunflower by its core.

By repeatedly finding a sunflower and plucking it, we can
reduce a family with more than M sets to a family with

at most M sets.

If Z is a family of sets, the above result is denoted by
pluck(Z).

e pluck(Z) is not unique.®

2]t depends on the sequence of sunflowers one plucks.

©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 783



An Example of Plucking

e Recall the sunflower on p. 777:

zZ = {{1,2,3,5},{1,2,6,9},{0,1,2,11},
{1,2,12,13},{1,2,8,10}, {1,2,4,7}}

pluck(2) = {{1,2}}.
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Razborov's Theorem

Theorem 91 (Razborov (1985)) There is a constant ¢

such that for large enough n, all monotone circuits for
1/8

CLIQUE,, j, with k = n'/% have size at least n°"

e We shall approximate any monotone circuit for

CLIQUE,, by a restricted kind of crude circuit.

e The approximation will proceed in steps: one step for

each gate of the monotone circuit.

e Each step introduces few errors (false positives and false

negatives).

e Yet, the final crude circuit has exponentially many

CeITrors.
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The Proof
Fix k = nt/4.
Fix ¢ = nl/8,

Note that?

2(y) <k -1
2

p will be fixed later to be n'/®logn.

Fix M = (p —1)“2.
— Recall the Erdés-Rado lemma (p. 778).

aCorrected by Mr. Moustapha Bande (D98922042) on January 5, 2010.
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The Proof (continued)

Each crude circuit used in the approximation process is
of the form CC(X1, Xo, ..., X,,), where:

— X; CV.
— | X;| < L.
—m < M.

It answers true if any X; is a clique.

We shall show how to approximate any circuit for
CLIQUE,, j, by such a crude circuit, inductively.

The induction basis is straightforward:

— Input gate g¢;; is the crude circuit CC({4,j}).
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The Proof (continued)

e A monotone circuit is the OR or AND of two subcircuits.

e We will build approximators of the overall circuit from

the approximators of the two subcircuits.
— Start with two crude circuits CC(X’) and CC())).

X and )Y are two families of at most M sets of nodes,

each set containing at most ¢ nodes.

We will construct the approximate OR and the

approximate AND of these subcircuits.

Then show both approximations introduce few errors.
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The Proof: ORrR

e CC(XUY) is equivalent to the Or of CC(X) and CC()).

— Trivially, a node set C € X U ) is a clique if and only
if C € X is a clique or C € Y is a clique.

e Violations in using CC(X U )) occur when
YUY |> M.

e Such violations are eliminated by using

CC(pluck(X U Y))

as the approximate OR of CC(&X) and CC()).
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The Proof: ORrR

o If CC(Z2) is true, then CC(pluck(Z)) must be true.

— The quick reason: If Y is a clique, then a subset of Y
must also be a clique.

— For each Y € X U ), there must exist at least one
X € pluck(X U)Y) such that X C Y.

— If Y is a clique, then this X is also a clique.

e We now bound the number of false positives and false

negatives introduced by the approximate OR.
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The Proof: OR (concluded)

CC(pluck(X UY)) introduces a false positive if a
negative example makes both CC(X’) and CC())) return
false but makes CC(pluck(X U Y)) return true.

CC(pluck(X U Y)) introduces a false negative if a
positive example makes either CC(X) or CC()) return
true but makes CC(pluck(X U Y)) return false.

We next count the number of false positives and false
negatives introduced by CC(pluck(X U Y)).
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The Number of False Positives

Lemma 92 CC(pluck(X U)Y)) introduces at most

]% 27P(k — 1)™ false positives.

e Each plucking operation replaces the sunflower
{Z1,Zs,...,2Z,} with its core Z.

e A false positive is necessarily a coloring such that:

— There is a pair of identically colored nodes in each
petal Z; (and so both crude circuits return false).

— But the core contains distinctly colored nodes.

— This implies at least one node from each

identical-color pair was plucked away.
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Proof of Lemma 92 (continued)
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Proof of Lemma 92 (continued)

e We now count the number of such colorings.
e Color nodes V' at random with & — 1 colors.

e Let R(X) denote the event that there are repeated
colors in set X.
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Proof of Lemma 92 (continued)

prob[ R(Z1) A --- A R(Z,) A—=R(Z)]  (20)
prob[R(Z )N+ NR(Zp) [ -R(Z) ]

H prob[ R(Z;) | ~R(Z) |

< Hprob[R(Zi) ! (21)

— First equality holds because R(Z;) are independent
given - R(Z) as Z contains their only common nodes.

— Last inequality holds as the likelihood of repetitions
in Z; decreases given no repetitions in its subset Z.
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Proof of Lemma 92 (continued)
Consider two nodes in Z;.
The probability that they have identical color is

Now

G .1
—k—1"k—1" 2

So the probability® that a random coloring is a new false

| Z;
prob[ R(Z;)] < () <

positive is at most 277 by inequality (21) on p. 796.

As there are (k — 1)™ different colorings, each plucking

introduces at most 27P(k — 1)™ false positives.

aProportion, i.e.
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Proof of Lemma 92 (concluded)
Recall that | X UY | < 2M.

Procedure pluck(X U )Y) ends when the set system

contains < M sets.
Each plucking reduces the number of sets by p — 1.
Hence at most - M pluckings occur in pluck(X U Y).

At most Iy
— 27 P(k-1)"
p—1

false positives are introduced.?

@Note that the numbers of errors are added not multiplied. Recall that
we count how many new errors are introduced by each approximation
step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.
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The Number of False Negatives

Lemma 93 CC(pluck(X U))) introduces no false negatives.

e Each plucking replaces sets in a crude circuit by their

common subset.

e This makes the test for cliqueness less stringent (p.
790).2

aRecall that CC(pluck(X U ))) introduces a false negative if a pos-
itive example makes either CC(X) or CC()) return true but makes
CC(pluck(X U )Y)) return false.
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The Proof: AND

e The approximate AND of crude circuits CC(X) and
CC()) is

CC(pIUCk({XZU}/] Xz EX,Yy Ey,‘XZUEISK}»

e We now count the number of errors this approximate

AND makes on the positive and negative examples.
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The Proof: AND (concluded)

e The approximate AND ntroduces a false positive if a
negative example makes either CC(X') or CC()) return

false but makes the approximate AND return true.

e The approximate AND ntroduces a false negative if a
positive example makes both CC(X’) and CC()) return

true but makes the approximate AND return false.

e We now bound the number of false positives and false

negatives introduced by the approximate AND.
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The Number of False Positives

Lemma 94 The approximate AND introduces at most
M?27P(k — 1)" false positives.

e We prove this claim in stages.
o CC{X,UY,: X, eXY; €)}) introduces no false
positives.
— If X; UYj is a clique, both X; and Y; must be
cliques, making both CC(X) and CC()) return true.
e CC{X,UY;: X, € X,Y; €V,| X;UY;| < (])
introduces no additional false positives because if
X; UYj is a clique, then X; and Y, are cliques.
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Proof of Lemma 94 (concluded)
X, UY;: X, €X,Y, €V, | X,UY;| < €}| < M.

Each plucking reduces the number of sets by p — 1.

SO pthk({XZU}/j Xz EX,lfj Ey,‘XZ'UX/j’ Sf})
involves < M?/(p — 1) pluckings.

Each plucking introduces at most 277(k — 1)" false
positives by the proof of Lemma 92 (p. 793).

The desired upper bound is

[(M?/(p—1)]27P(k — 1)" < M?*27P(k — 1)".
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The Number of False Negatives

Lemma 95 The approximate AND introduces at most
M? (Z:g:i) false negatives.

e We again prove this claim in stages.
o CC{X,UY,: X, e X Y; €V}) introduces no false
negatives.

— Suppose both CC(X) and CC())) accept a positive
example with a clique C of size k.

— This clique C must contain an X; € X and a Y; € ).
+ This is why both CC(X) and CC()) return true.

— As this clique C also contains X; UY}, the new circuit

returns true.
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Proof of Lemma 95 (continued)

Cligueof size k




Proof of Lemma 95 (continued)

introduces < M? (Z:ﬁj) false negatives.

— Deletion of set Z = X; UY} larger than £ introduces

false negatives only if Z is part of a clique.

There are <Z:||§||) such cliques.

x It is the number of positive examples whose clique

contains /.

(o2 < GZim)) as | Z] >

There are at most M?2 such Zs.
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Proof of Lemma 95 (concluded)

e Plucking introduces no false negatives.

— Recall that if CC(Z) is true, then CC(pluck(Z))
must be true (p. 790).
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Two Summarizing Lemmas

From Lemmas 92 (p. 793) and 94 (p. 802), we have:

Lemma 96 FEach approximation step introduces at most
M?27P(k — 1)™ false positives.
From Lemmas 93 (p. 799) and 95 (p. 804), we have:

Lemma 97 FEach approximation step introduces at most

M? (Z:gj) false negatives.
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The Proof (continued)

e The above two lemmas show that each approximation
step introduces “few” false positives and false negatives.

e We next show that the resulting crude circuit has “a

lot” of false positives or false negatives.
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The Final Crude Circuit

Lemma 98 FEvery final crude circuit is:
1. Identically false—thus wrong on all positive examples.
2. Or outputs true on at least half of the negative examples.
e Suppose it is not identically false.

e By construction, it accepts at least those graphs that

have a clique on some set X of nodes, with | X | </,

1/8 1/4

which at n is less than &k =n

The proof of Lemma 92 (p. 793ff) shows that at least
half of the colorings assign different colors to nodes in X.

So half of the negative examples have a clique in X and

are accepted.
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The Proof (continued)

e Recall the constants on p. 786: k = n1/4, V= n1/8,
p=n8logn, M = (p— 1) < n(/3m'* for large n.

e Suppose the final crude circuit is identically false.

— By Lemma 97 (p. 808), each approximation step
n—~0—1

g 1) false negatives.

introduces at most M 2(

— There are (Z) positive examples.

— The original monotone circuit for CLIQUE,, ;, has at
least

k

I L

M2(hZ, o)) M?

gates for large n.
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The Proof (concluded)

e Suppose the final crude circuit is not identically false.

— Lemma 98 (p. 810) says that there are at least
(k — 1)™/2 false positives.
— By Lemma 96 (p. 808), each approximation step

introduces at most M?27P(k — 1)" false positives

— The original monotone circuit for CLIQUE,, ;, has at
least

(]{3 — 1)”/2 _ op—1 - n(1/3>n1/8
M2 Pk — 1) M2
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Alexander Razborov (1963-)
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P =% NP Proved?

e Razborov’s theorem says that there is a monotone
language in NP that has no polynomial monotone

circuits.

e If we can prove that all monotone languages in P have

polynomial monotone circuits, then P # NP.

e But Razborov proved in 1985 that some monotone

languages in P have no polynomial monotone circuits!
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Finas
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