NODE COVER

NODE COVER seeks the smallest C' C V' in graph
G = (V, E) such that for each edge in F, at least one of

its endpoints is in C.

A heuristic to obtain a good node cover is to iteratively

move a node with the highest degree to the cover.

This turns out to produce an approximation ratio of?

c(M(x))
OPT(x)

= O(logn).

So it is not an e-approximation algorithm for any

constant € < 1 according to Eq. (19).

2Chvatal (1979).
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A 0.5-Approximation Algorithm?

. C = ()

. while F # () do
Delete an arbitrary edge { u,v } from F;
Add u and v to C; {Add 2 nodes to C' each time.}
Delete edges incident with u or v from FE;

: end while

. return C';

2Johnson (1974).
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Analysis

It is easy to see that (' is a node cover.
C' contains |C|/2 edges.?
No two edges of C share a node.P

Any node cover must contain at least one node from
each of these edges.

— If there is an edge in C' both of whose ends are

outside the cover, then that cover will not be valid.

The edges deleted in Line 3.
PTn fact, C as a set of edges is a mazimal matching.

©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 723



©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 724



Analysis (concluded)

This means that opT(G) > |C|/2.

The approximation ratio is hence

ISRy
opT(G) —

So we have a 0.5-approximation algorithm.

And the approximation threshold is therefore < 0.5.
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The 0.5 Bound Is Tight for the Algorithm?

aContributed by Mr. Jeng-Chung Li (R92922087) on December 20,
2003. Recall that Konig’s theorem says the size of a maximum matching
equals that of a minimum node cover in a bipartite graph.
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Remarks

e The approximation threshold is at least?®

1
1 (1o\f _ 21) ~ 0.2651.

e The approximation threshold is 0.5 if one assumes the

unique games conjecture.”

e This ratio 0.5 is also the lower bound for any “greedy”

algorithms.®

2Dinur and Safra (2002).

PKhot and Regev (2008).
°Davis and Impagliazzo (2004).
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Maximum Satisfiability

e Given a set of clauses, MAXSAT seeks the truth

assignment that satisfies the most.

e MAX2SAT is already NP-complete (p. 347), so MAXSAT is
NP-complete.

e Consider the more general k-MAXGSAT for constant k.
— Let & = {¢1, ¢p2,...,0m} be a set of boolean

expressions in n variables.

— Each ¢; is a general expression involving up to k

variables.

— k-MAXGSAT seeks the truth assignment that satisfies

the most expressions.
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A Probabilistic Interpretation of an Algorithm

e Let ¢, involve k; < k variables and be satisfied by s; of

the 2% truth assignments.

e A random truth assignment € { 0,1 }" satisfies ¢; with
probability p(¢;) = s;/2%.

— p(¢;) is easy to calculate as k is a constant.

e Hence a random truth assignment satisfies an average of

m

p(®) = p(¢s)

1=1

expressions @, .
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The Search Procedure

Clearly

% {p(®|z1 = true]) + p(P|x; = false]) }.

Select the t; € {true, false} such that p(®|xy =t1]) is

the larger one.
Note that p(®[xz1 =t1]) > p(P).

Repeat the procedure with expression ®|x; = t1 ] until
all variables x; have been given truth values ¢; and all ¢,

are either true or false.
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The Search Procedure (continued)

e By our hill-climbing procedure,

p(®)
p(®[z1 =11])
p(Pzy =t1, 22 =12])

p((I)[l‘l — tl,il?g — tQ,. N )

e So at least p(®) expressions are satisfied by truth

assignment (t1,t2,...,t,).
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The Search Procedure (concluded)

e Note that the algorithm is deterministic!

e [t is called the method of conditional

expectations.?

aErdés and Selfridge (1973); Spencer (1987).
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Approximation Analysis

The optimum is at most the number of satisfiable
¢p;—i.e., those with p(¢;) > 0.

Hence the ratio of algorithm’s output vs. the optimum

> p(P) _ Zzp(¢z)

; ZP(¢z’)>O 1

So this is a polynomial-time e-approximation algorithm
with e =1 — minp(¢i)>0 p(¢z)

Because p(¢;) > 27% for a satisfiable ¢;, the heuristic is
a polynomial-time e-approximation algorithm with
e=1-27"

®Recall that ). a;/> . b; > min;(a;/b;).
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Back to MAXSAT
In MAXSAT, the ¢;’s are clauses (like x Vy V —z).

Hence p(¢;) > 1/2, which happens when ¢; contains a

single literal.

The heuristic becomes a polynomial-time

e-approximation algorithm with e = 1/2.2

Suppose we set each boolean variable to true with
probability (v/5 — 1)/2, the golden ratio.

Then follow through the method of conditional

expectations to derandomize it.

2Johnson (1974).
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Back to MAXSAT (concluded)

e We will obtain a [ (3 — v/5)]/2-approximation
algorithm.?

— Note [ (3 —+/5)]/2 ~ 0.382.

e If the clauses have k distinct literals,
p(di) =1 27",

e The heuristic becomes a polynomial-time

e-approximation algorithm with e = 27F.

— This is the best possible for £ > 3 unless P = NP.

2Lieberherr and Specker (1981).
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MAX CUT Revisited

MAX CUT seeks to partition the nodes of graph
G = (V,E) into (S,V — 5) so that there are as many
edges as possible between S and V' — 5.

It is NP-complete.?

Local search starts from a feasible solution and

performs “local” improvements until none are possible.

e Next we present a local-search algorithm for MAX CUT.

aRecall p. 378.
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A 0.5-Approximation Algorithm for MAX CUT
.S = 0;
: while Jv € V whose switching sides results in a larger
cut do
Switch the side of v;
. end while

. return S;

e A 0.12-approximation algorithm exists.?

e 0.059-approximation algorithms do not exist unless

NP = ZPP.

2Goemans and Williamson (1995).
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Analysis

/ Optimal cut
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Analysis (continued)

Partition V = V; U V5 U V3 U V,, where
— Our algorithm returns (V3 UV, V3 U Vy).
— The optimum cut is (V1 U V3, Vo U Vy).

Let e;; be the number of edges between V; and V.

Our algorithm returns a cut of size
€13 + €14 + €23 + €24.
The optimum cut size is

€12 + €34 + €14 + €23.
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Analysis (continued)

e For each node v € V7, its edges to V7 U V5 are
outnumbered by those to V3 U Vj.

— Otherwise, v would have been moved to V3 U Vj to

improve the cut.

e Considering all nodes in V; together, we have

2e11 +e12 < e13 + eyy.

— 2eq11, because each edge in V; is counted twice.

e The above inequality implies

e12 < e13 + €e14.
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Analysis (concluded)

e Similarly,

€12 €23 + €24
€34 €23 + €13

€34 €14 + €24

e Add all four inequalities, divide both sides by 2, and add

the inequality e14 + e23 < €14 + €23 + €13 + €24 to obtain
e12 + €34 + €14 + €23 < 2(e13 + €14 + €23 + €24).

e The above says our solution is at least half the optimum.
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Approximability, Unapproximability, and Between

e KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have

approximation thresholds less than 1.
— KNAPSACK has a threshold of 0 (p. 745).

— But NODE COVER (p. 725) and MAXSAT have a
threshold larger than O.

e The situation is maximally pessimistic for TSP, which
cannot be approximated (p. 743).
— The approximation threshold of TSP is 1.
+ The threshold is 1/3 if TSP satisfies the triangular
inequality.
— The same holds for INDEPENDENT SET (see the
textbook).
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Unapproximability of Tsp?

Theorem 85 The approximation threshold of TSP s 1
unless P = NP.

e Suppose there is a polynomial-time e-approximation
algorithm for TSP for some € < 1.

e We shall construct a polynomial-time algorithm to solve
the NP-complete HAMILTONIAN CYCLE.

e Given any graph G = (V, F), construct a TSP with | V|
cities with distances

if {i,jleE

otherwise

1,
|V |

1—e”’

2Sahni and Gonzales (1976).
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The Proof (concluded)

e Run the alleged approximation algorithm on this TSP.

e Suppose a tour of cost | V| is returned.

— This tour must be a Hamiltonian cycle.

[V |

e Suppose a tour that includes an edge of length +— is

returned.

— The total length of this tour is > %

— Because the algorithm is e-approximate, the optimum
is at least 1 — € times the returned tour’s length.

— The optimum tour has a cost exceeding |V |.

— Hence G has no Hamiltonian cycles.
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KNAPSACK Has an Approximation Threshold of Zero®

Theorem 86 For any €, there is a polynomial-time

e-approximation algorithm for KNAPSACK.

e We have n weights wy, wo, ..., w, € Z1, a weight limit

W, and n values vy, vo,...,v, € ZT.P

e We must find an I C {1,2,...,n} such that
D icswi < W and ) ., v; is the largest possible.

2Ibarra and Kim (1975).
PIf the values are fractional, the result is slightly messier, but the main

conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011,
R93922045) on December 29, 2004.
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The Proof (continued)

V = max{vy,va,..., v}
Clearly, ) .., vi <nV.
Let 0<i:<nand 0 <ov<nV.

W (i,v) is the minimum weight attainable by selecting

only from the first ¢ items and with a total value of v.

— Itisan (n+ 1) x (nV 4+ 1) table.
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The Proof (continued)
Set W(0,v) =o0 forve {1,2,...,nV } and W(i,0) =0

fort=0,1,...,n.2
Then, for 0 <17 < n,

Wi+ 1,v) =min{W(i,v), W(i,v — v41) + wis1}

Finally, pick the largest v such that W (n,v) < W.P

The running time is O(n?V), not polynomial time.

e Key idea: Limit the number of precision bits.

2Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu

(D98922013) on December 28, 2009.
PLawler (1979).
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The Proof (continued)

e Define

;1 ob | Vi
=25
— This is equivalent to zeroing each v;’s last b bits.

e (all the original instance
r=(wi,...,wp, W,v1,...

e (Call the approximate instance
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The Proof (continued)

e Solving 2’ takes time O(n?V/2%).
— The algorithm only performs subtractions on the

v;-related values.

So the b last bits can be remowved from the

calculations.

1

That is, use v) = | % | and V" = max(v}, vy, ..., v))

in dynamic programming.

It is now an (n + 1) x (nV + 1)/2° table.
— Then multiply the returned value by 2°.

e The selection I’ is optimal for z’.
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The Proof (continued)

The selection I’ is close to the optimal selection I, for x:

Z’UZ>Z’U >qu >Z —2b Zvi —n2°.

e l’ e’ el el el

Hence

ZUL' Z Zvi —n2b.

vel’ el

Without loss of generality, assume w; < W for all 1.

— Otherwise, item 7 is redundant.

V is a lower bound on OPT.

— Picking an item with value V' is a legitimate choice.
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The Proof (concluded)

The relative error from the optimum is:

Zie[ Ui — Zie[’ Uq < Zie] Uy — Ziep Uy <
Zie[ U; vV

Suppose we pick b = |log, %J

The algorithm becomes e-approximate.®

The running time is then O(n?V/2°%) = O(n3/e), a

polynomial in n and 1/e.”

2See Eq. (17) on p. 715.

PIt hence depends on the wvalue of 1/e. Thanks to a lively class dis-
cussion on December 20, 2006. If we fix ¢ and let the problem size
increase, then the complexity is cubic. Contributed by Mr. Ren-Shan
Luoh (D97922014) on December 23, 2008.
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Comments

INDEPENDENT SET and NODE COVER are reducible to
each other (Corollary 45, p. 371).

NODE COVER has an approximation threshold at most
0.5 (p. 727).

But INDEPENDENT SET is unapproximable (see the
textbook).

INDEPENDENT SET limited to graphs with degree < k is
called k-DEGREE INDEPENDENT SET.

k-DEGREE INDEPENDENT SET is approximable (see the
textbook).
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On P vs. NP
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If 50 million people believe a foolish thing,

it’s still a foolish thing.
— George Bernard Shaw (1856-1950)
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Density?

The density of language L C ¥* is defined as
densp(n) =|{x € L:|x| <n}|.
o If L =1{0,1}* then densy(n) =21 —1.
e So the density function grows at most exponentially.
e For a unary language L C {0 }*,

densy(n) < n+ 1.

—N—
— Because L C {¢,0,00,...,00---0,...

2Berman and Hartmanis (1977).
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Sparsity

e Sparse languages are languages with polynomially

bounded density functions.

e Dense languages are languages with superpolynomial

density functions.

©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 757



Self-Reducibility for SAT

An algorithm exhibits self-reducibility if it finds a
certificate by exploiting algorithms for the decision

version of the same problem.

Let ¢ be a boolean expression in n variables

L1y Ly ey Ly

t € {0,1} is a partial truth assignment for

L1, X2y.+.,Lj.

¢|t] denotes the expression after substituting the truth

values of ¢ for x1,22,...,2¢| In .
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An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty t.
1: if || =n then
2:  return ¢[t];
3: else
4
5

return ¢[t0]V ¢[t1];
. end if

The above algorithm runs in exponential time, by visiting all
the partial assignments (or nodes on a depth-n binary tree).?

@The same idea was used in the proof of Proposition 79 on p. 614.
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NP-Completeness and Density?

Theorem 87 If a unary language U C {0 }* is
NP-complete, then P= NP.

e Suppose there is a reduction R from SAT to U.

We use R to find a truth assignment that satisfies

boolean expression ¢ with n variables if it is satisfiable.

Specifically, we use R to prune the exponential-time

exhaustive search on p. 759.

The trick is to keep the already discovered results ¢|t |
in a table H.

2Berman (1978).

©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 760



if |t| =n then
return o[t |;
else
if (R(¢[t]),v) is in table H then
return v;
else
if ¢[t0] = “satisfiable” or ¢[t1] = “satisfiable” then
Insert (R(¢[t]), “satisfiable”) into H;

return “satisfiable”;

1:
2:
3:
4:
5:
6:
7
8:
9:

else
Insert (R(¢p[t]), “unsatisfiable”) into H;
return “unsatisfiable”;
end if
end if
: end if

—_ = =
A
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The Proof (continued)

Since R is a reduction, R(¢[t]) = R(¢[t']) implies that
¢[t] and ¢[t' | must be both satisfiable or unsatisfiable.

R(¢[t]) has polynomial length < p(n) because R runs in

log space.

As R maps to unary numbers, there are only

polynomially many p(n) values of R(¢[t]).

How many nodes of the complete binary tree (of

invocations/truth assignments) need to be visited?
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The Proof (continued)

A search of the table takes time O(p(n)) in the

random-access memory model.

The running time is O(Mp(n)), where M is the total

number of invocations of the algorithm.

If that number is a polynomial, the overall algorithm

runs in polynomial time and we are done.

The invocations of the algorithm form a binary tree of

depth at most n.
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The Proof (continued)

e There is a set T'= {t;,t2,...} of invocations® such that:
1. |T|>(M—-1)/(2n).
2. All invocations in T are recursive (nonleaves).
3. None of the elements of 71" is a prefix of another.

e To build one such 7', carry out the 1st step and then
loop over the 2nd and 3rd steps on the next page.

a@Partial truth assignments, i.e.
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3rd step: Delete all 1's

at most »n ancestors

(prefixes) from

further consideration 2nd step: Select any

bottom undeleted
invocation f and add
itto 7

\ 1st step: Delete
leaves; (M —1)/2

nonleaves remaining
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An Example

T = {h,j}; none of h and j is a prefix of the other.
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The Proof (continued)

e All invocations t € T have different R(¢[t]) values.

— The invocation of one started after the invocation of
the other had terminated.

— If they had the same value, the one that was invoked
later would have looked it up, and therefore would

not be recursive, a contradiction.

e The existence of 17" implies that there are at least
(M —1)/(2n) different R(¢[t]) values in the table.
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The Proof (concluded)

We already know that there are at most p(n) such

values.
Hence (M —1)/(2n) < p(n).
Thus M < 2np(n) + 1.

The running time is therefore O(Mp(n)) = O(np?(n)).
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Other Results for Sparse Languages

Theorem 88 (Mahaney (1980)) If a sparse language is
NP-complete, then P= NP.

Theorem 89 (Fortung (1979)) If a unary language
U C{0}* is coNP-complete, then P= NP.

e Suppose there is a reduction R from SAT COMPLEMENT
to U.

e The rest of the proof is basically identical except that,

now, we want to make sure a formula is unsatisfiable.
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