
node cover

• node cover seeks the smallest C ⊆ V in graph

G = (V,E) such that for each edge in E, at least one of

its endpoints is in C.

• A heuristic to obtain a good node cover is to iteratively

move a node with the highest degree to the cover.

• This turns out to produce an approximation ratio ofa

c(M(x))

opt(x)
= Θ(logn).

• So it is not an ε-approximation algorithm for any

constant ε < 1 according to Eq. (19).

aChvátal (1979).
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A 0.5-Approximation Algorithma

1: C := ∅;
2: while E �= ∅ do

3: Delete an arbitrary edge {u, v } from E;

4: Add u and v to C; {Add 2 nodes to C each time.}
5: Delete edges incident with u or v from E;

6: end while

7: return C;

aJohnson (1974).
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Analysis

• It is easy to see that C is a node cover.

• C contains |C|/2 edges.a

• No two edges of C share a node.b

• Any node cover must contain at least one node from

each of these edges.

– If there is an edge in C both of whose ends are

outside the cover, then that cover will not be valid.

aThe edges deleted in Line 3.
bIn fact, C as a set of edges is a maximal matching.
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Analysis (concluded)

• This means that opt(G) ≥ |C|/2.
• The approximation ratio is hence

|C|
opt(G)

≤ 2.

• So we have a 0.5-approximation algorithm.

• And the approximation threshold is therefore ≤ 0.5.
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The 0.5 Bound Is Tight for the Algorithma

Optimal cover

aContributed by Mr. Jenq-Chung Li (R92922087) on December 20,

2003. Recall that König’s theorem says the size of a maximum matching

equals that of a minimum node cover in a bipartite graph.
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Remarks

• The approximation threshold is at leasta

1−
(
10
√
5− 21

)−1

≈ 0.2651.

• The approximation threshold is 0.5 if one assumes the

unique games conjecture.b

• This ratio 0.5 is also the lower bound for any “greedy”

algorithms.c

aDinur and Safra (2002).
bKhot and Regev (2008).
cDavis and Impagliazzo (2004).
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Maximum Satisfiability

• Given a set of clauses, maxsat seeks the truth

assignment that satisfies the most.

• max2sat is already NP-complete (p. 347), so maxsat is

NP-complete.

• Consider the more general k-maxgsat for constant k.

– Let Φ = {φ1, φ2, . . . , φm} be a set of boolean

expressions in n variables.

– Each φi is a general expression involving up to k

variables.

– k-maxgsat seeks the truth assignment that satisfies

the most expressions.
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A Probabilistic Interpretation of an Algorithm

• Let φi involve ki ≤ k variables and be satisfied by si of

the 2ki truth assignments.

• A random truth assignment ∈ { 0, 1 }n satisfies φi with

probability p(φi) = si/2
ki .

– p(φi) is easy to calculate as k is a constant.

• Hence a random truth assignment satisfies an average of

p(Φ) =
m∑
i=1

p(φi)

expressions φi.
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The Search Procedure

• Clearly

p(Φ) =
1

2
{ p(Φ[x1 = true ]) + p(Φ[x1 = false ]) }.

• Select the t1 ∈ {true, false} such that p(Φ[x1 = t1 ]) is

the larger one.

• Note that p(Φ[x1 = t1 ]) ≥ p(Φ).

• Repeat the procedure with expression Φ[x1 = t1 ] until

all variables xi have been given truth values ti and all φi

are either true or false.
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The Search Procedure (continued)

• By our hill-climbing procedure,

p(Φ)

≤ p(Φ[x1 = t1 ])

≤ p(Φ[x1 = t1, x2 = t2 ])

≤ · · ·
≤ p(Φ[x1 = t1, x2 = t2, . . . , xn = tn ]).

• So at least p(Φ) expressions are satisfied by truth

assignment (t1, t2, . . . , tn).
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The Search Procedure (concluded)

• Note that the algorithm is deterministic!

• It is called the method of conditional

expectations.a

aErdős and Selfridge (1973); Spencer (1987).
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Approximation Analysis

• The optimum is at most the number of satisfiable

φi—i.e., those with p(φi) > 0.

• Hence the ratio of algorithm’s output vs. the optimum

isa

≥ p(Φ)∑
p(φi)>0 1

=

∑
i p(φi)∑

p(φi)>0 1
≥ min

p(φi)>0
p(φi).

• So this is a polynomial-time ε-approximation algorithm

with ε = 1−minp(φi)>0 p(φi).

• Because p(φi) ≥ 2−k for a satisfiable φi, the heuristic is

a polynomial-time ε-approximation algorithm with

ε = 1− 2−k.
aRecall that

∑
i ai/

∑
i bi ≥ mini(ai/bi).
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Back to maxsat

• In maxsat, the φi’s are clauses (like x ∨ y ∨ ¬z).
• Hence p(φi) ≥ 1/2, which happens when φi contains a

single literal.

• The heuristic becomes a polynomial-time

ε-approximation algorithm with ε = 1/2.a

• Suppose we set each boolean variable to true with

probability (
√
5 − 1)/2, the golden ratio.

• Then follow through the method of conditional

expectations to derandomize it.

aJohnson (1974).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 734



Back to maxsat (concluded)

• We will obtain a [ (3−√
5 ) ]/2-approximation

algorithm.a

– Note [ (3−√
5 ) ]/2 ≈ 0.382.

• If the clauses have k distinct literals,

p(φi) = 1− 2−k.

• The heuristic becomes a polynomial-time

ε-approximation algorithm with ε = 2−k.

– This is the best possible for k ≥ 3 unless P = NP.

aLieberherr and Specker (1981).
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max cut Revisited

• max cut seeks to partition the nodes of graph

G = (V,E) into (S, V − S) so that there are as many

edges as possible between S and V − S.

• It is NP-complete.a

• Local search starts from a feasible solution and

performs “local” improvements until none are possible.

• Next we present a local-search algorithm for max cut.

aRecall p. 378.
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A 0.5-Approximation Algorithm for max cut

1: S := ∅;
2: while ∃v ∈ V whose switching sides results in a larger

cut do

3: Switch the side of v;

4: end while

5: return S;

• A 0.12-approximation algorithm exists.a

• 0.059-approximation algorithms do not exist unless

NP = ZPP.

aGoemans and Williamson (1995).
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Analysis

V3 V4

V2V1

Optimal cut

Our cut

e12

e13
e24

e34

e14 e23
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Analysis (continued)

• Partition V = V1 ∪ V2 ∪ V3 ∪ V4, where

– Our algorithm returns (V1 ∪ V2, V3 ∪ V4).

– The optimum cut is (V1 ∪ V3, V2 ∪ V4).

• Let eij be the number of edges between Vi and Vj .

• Our algorithm returns a cut of size

e13 + e14 + e23 + e24.

• The optimum cut size is

e12 + e34 + e14 + e23.
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Analysis (continued)

• For each node v ∈ V1, its edges to V1 ∪ V2 are

outnumbered by those to V3 ∪ V4.

– Otherwise, v would have been moved to V3 ∪ V4 to

improve the cut.

• Considering all nodes in V1 together, we have

2e11 + e12 ≤ e13 + e14.

– 2e11, because each edge in V1 is counted twice.

• The above inequality implies

e12 ≤ e13 + e14.
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Analysis (concluded)

• Similarly,

e12 ≤ e23 + e24

e34 ≤ e23 + e13

e34 ≤ e14 + e24

• Add all four inequalities, divide both sides by 2, and add

the inequality e14 + e23 ≤ e14 + e23 + e13 + e24 to obtain

e12 + e34 + e14 + e23 ≤ 2(e13 + e14 + e23 + e24).

• The above says our solution is at least half the optimum.
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Approximability, Unapproximability, and Between

• knapsack, node cover, maxsat, and max cut have

approximation thresholds less than 1.

– knapsack has a threshold of 0 (p. 745).

– But node cover (p. 725) and maxsat have a

threshold larger than 0.

• The situation is maximally pessimistic for tsp, which

cannot be approximated (p. 743).

– The approximation threshold of tsp is 1.

∗ The threshold is 1/3 if tsp satisfies the triangular

inequality.

– The same holds for independent set (see the

textbook).
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Unapproximability of tspa

Theorem 85 The approximation threshold of tsp is 1

unless P = NP.

• Suppose there is a polynomial-time ε-approximation

algorithm for tsp for some ε < 1.

• We shall construct a polynomial-time algorithm to solve

the NP-complete hamiltonian cycle.

• Given any graph G = (V,E), construct a tsp with |V |
cities with distances

dij =

⎧⎨
⎩ 1, if { i, j } ∈ E

|V |
1−ε , otherwise

aSahni and Gonzales (1976).
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The Proof (concluded)

• Run the alleged approximation algorithm on this tsp.

• Suppose a tour of cost |V | is returned.
– This tour must be a Hamiltonian cycle.

• Suppose a tour that includes an edge of length |V |
1−ε is

returned.

– The total length of this tour is > |V |
1−ε .

– Because the algorithm is ε-approximate, the optimum

is at least 1− ε times the returned tour’s length.

– The optimum tour has a cost exceeding |V |.
– Hence G has no Hamiltonian cycles.
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knapsack Has an Approximation Threshold of Zeroa

Theorem 86 For any ε, there is a polynomial-time

ε-approximation algorithm for knapsack.

• We have n weights w1, w2, . . . , wn ∈ Z
+, a weight limit

W , and n values v1, v2, . . . , vn ∈ Z
+.b

• We must find an I ⊆ {1, 2, . . . , n} such that∑
i∈I wi ≤ W and

∑
i∈I vi is the largest possible.

aIbarra and Kim (1975).
bIf the values are fractional, the result is slightly messier, but the main

conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011,

R93922045) on December 29, 2004.
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The Proof (continued)

• Let

V = max{v1, v2, . . . , vn}.
• Clearly,

∑
i∈I vi ≤ nV .

• Let 0 ≤ i ≤ n and 0 ≤ v ≤ nV .

• W (i, v) is the minimum weight attainable by selecting

only from the first i items and with a total value of v.

– It is an (n+ 1)× (nV + 1) table.
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The Proof (continued)

• Set W (0, v) = ∞ for v ∈ { 1, 2, . . . , nV } and W (i, 0) = 0

for i = 0, 1, . . . , n.a

• Then, for 0 ≤ i < n,

W (i+ 1, v) = min{W (i, v),W (i, v − vi+1) + wi+1}.

• Finally, pick the largest v such that W (n, v) ≤ W .b

• The running time is O(n2V ), not polynomial time.

• Key idea: Limit the number of precision bits.

aContributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu

(D98922013) on December 28, 2009.
bLawler (1979).
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v

<W

nV
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The Proof (continued)

• Define

v′i = 2b
⌊ vi
2b

⌋
.

– This is equivalent to zeroing each vi’s last b bits.

• Call the original instance

x = (w1, . . . , wn,W, v1, . . . , vn).

• Call the approximate instance

x′ = (w1, . . . , wn,W, v′1, . . . , v
′
n).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 749



The Proof (continued)

• Solving x′ takes time O(n2V/2b).

– The algorithm only performs subtractions on the

vi-related values.

– So the b last bits can be removed from the

calculations.

– That is, use v′′i =
⌊
vi

2b

⌋
and V ′′ = max(v′′1 , v

′′
2 , . . . , v

′′
n)

in dynamic programming.

– It is now an (n+ 1)× (nV + 1)/2b table.

– Then multiply the returned value by 2b.

• The selection I ′ is optimal for x′.
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The Proof (continued)

• The selection I ′ is close to the optimal selection I , for x:

∑
i∈I′

vi ≥
∑
i∈I′

v′i ≥
∑
i∈I

v′i ≥
∑
i∈I

(vi − 2b) ≥
(∑

i∈I

vi

)
− n2b.

• Hence ∑
i∈I′

vi ≥
(∑

i∈I

vi

)
− n2b.

• Without loss of generality, assume wi ≤ W for all i.

– Otherwise, item i is redundant.

• V is a lower bound on opt.

– Picking an item with value V is a legitimate choice.
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The Proof (concluded)

• The relative error from the optimum is:∑
i∈I vi −

∑
i∈I′ vi∑

i∈I vi
≤
∑

i∈I vi −
∑

i∈I′ vi

V
≤ n2b

V
.

• Suppose we pick b = �log2 εV
n �.

• The algorithm becomes ε-approximate.a

• The running time is then O(n2V/2b) = O(n3/ε), a

polynomial in n and 1/ε.b

aSee Eq. (17) on p. 715.
bIt hence depends on the value of 1/ε. Thanks to a lively class dis-

cussion on December 20, 2006. If we fix ε and let the problem size

increase, then the complexity is cubic. Contributed by Mr. Ren-Shan

Luoh (D97922014) on December 23, 2008.
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Comments

• independent set and node cover are reducible to

each other (Corollary 45, p. 371).

• node cover has an approximation threshold at most

0.5 (p. 727).

• But independent set is unapproximable (see the

textbook).

• independent set limited to graphs with degree ≤ k is

called k-degree independent set.

• k-degree independent set is approximable (see the

textbook).
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On P vs. NP
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If 50 million people believe a foolish thing,

it’s still a foolish thing.

— George Bernard Shaw (1856–1950)
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Densitya

The density of language L ⊆ Σ∗ is defined as

densL(n) = |{x ∈ L : |x | ≤ n}|.
• If L = { 0, 1 }∗, then densL(n) = 2n+1 − 1.

• So the density function grows at most exponentially.

• For a unary language L ⊆ { 0 }∗,
densL(n) ≤ n+ 1.

– Because L ⊆ { ε, 0, 00, . . . ,
n︷ ︸︸ ︷

00 · · · 0, . . . }.
aBerman and Hartmanis (1977).
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Sparsity

• Sparse languages are languages with polynomially

bounded density functions.

• Dense languages are languages with superpolynomial

density functions.
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Self-Reducibility for sat

• An algorithm exhibits self-reducibility if it finds a

certificate by exploiting algorithms for the decision

version of the same problem.

• Let φ be a boolean expression in n variables

x1, x2, . . . , xn.

• t ∈ { 0, 1 }j is a partial truth assignment for

x1, x2, . . . , xj .

• φ[ t ] denotes the expression after substituting the truth

values of t for x1, x2, . . . , x| t | in φ.
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An Algorithm for sat with Self-Reduction

We call the algorithm below with empty t.

1: if | t | = n then

2: return φ[ t ];

3: else

4: return φ[ t0 ] ∨ φ[ t1 ];

5: end if

The above algorithm runs in exponential time, by visiting all

the partial assignments (or nodes on a depth-n binary tree).a

aThe same idea was used in the proof of Proposition 79 on p. 614.
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NP-Completeness and Densitya

Theorem 87 If a unary language U ⊆ { 0 }∗ is

NP-complete, then P = NP.

• Suppose there is a reduction R from sat to U .

• We use R to find a truth assignment that satisfies

boolean expression φ with n variables if it is satisfiable.

• Specifically, we use R to prune the exponential-time

exhaustive search on p. 759.

• The trick is to keep the already discovered results φ[ t ]

in a table H.

aBerman (1978).
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1: if | t | = n then

2: return φ[ t ];

3: else

4: if (R(φ[ t ]), v) is in table H then

5: return v;

6: else

7: if φ[ t0 ] = “satisfiable” or φ[ t1 ] = “satisfiable” then

8: Insert (R(φ[ t ]), “satisfiable”) into H;

9: return “satisfiable”;

10: else

11: Insert (R(φ[ t ]), “unsatisfiable”) into H;

12: return “unsatisfiable”;

13: end if

14: end if

15: end if
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The Proof (continued)

• Since R is a reduction, R(φ[ t ]) = R(φ[ t′ ]) implies that

φ[ t ] and φ[ t′ ] must be both satisfiable or unsatisfiable.

• R(φ[ t ]) has polynomial length ≤ p(n) because R runs in

log space.

• As R maps to unary numbers, there are only

polynomially many p(n) values of R(φ[ t ]).

• How many nodes of the complete binary tree (of

invocations/truth assignments) need to be visited?
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The Proof (continued)

• A search of the table takes time O(p(n)) in the

random-access memory model.

• The running time is O(Mp(n)), where M is the total

number of invocations of the algorithm.

• If that number is a polynomial, the overall algorithm

runs in polynomial time and we are done.

• The invocations of the algorithm form a binary tree of

depth at most n.
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The Proof (continued)

• There is a set T = { t1, t2, . . . } of invocationsa such that:

1. |T | ≥ (M − 1)/(2n).

2. All invocations in T are recursive (nonleaves).

3. None of the elements of T is a prefix of another.

• To build one such T , carry out the 1st step and then

loop over the 2nd and 3rd steps on the next page.

aPartial truth assignments, i.e.
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An Example

r

a c

d e f

g h i j

l k

1

2

3

4

5

T = { h, j }; none of h and j is a prefix of the other.
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The Proof (continued)

• All invocations t ∈ T have different R(φ[ t ]) values.

– The invocation of one started after the invocation of

the other had terminated.

– If they had the same value, the one that was invoked

later would have looked it up, and therefore would

not be recursive, a contradiction.

• The existence of T implies that there are at least

(M − 1)/(2n) different R(φ[ t ]) values in the table.
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The Proof (concluded)

• We already know that there are at most p(n) such

values.

• Hence (M − 1)/(2n) ≤ p(n).

• Thus M ≤ 2np(n) + 1.

• The running time is therefore O(Mp(n)) = O(np2(n)).
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Other Results for Sparse Languages

Theorem 88 (Mahaney (1980)) If a sparse language is

NP-complete, then P = NP.

Theorem 89 (Fortung (1979)) If a unary language

U ⊆ { 0 }∗ is coNP-complete, then P = NP.

• Suppose there is a reduction R from sat complement

to U .

• The rest of the proof is basically identical except that,

now, we want to make sure a formula is unsatisfiable.
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