
BPPa (Bounded Probabilistic Polynomial)

• The class BPP contains all languages L for which there

is a precise polynomial-time NTM N such that:

– If x ∈ L, then at least 3/4 of the computation paths

of N on x lead to “yes.”

– If x �∈ L, then at least 3/4 of the computation paths

of N on x lead to “no.”

• So N accepts or rejects by a clear majority.

aGill (1977).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 601

Magic 3/4?

• The number 3/4 bounds the probability (ratio) of a

right answer away from 1/2.

• Any constant strictly between 1/2 and 1 can be used

without affecting the class BPP.

• In fact, as with RP,

1

2
+

1

q(n)

for any polynomial q(n) can replace 3/4 (p. 589).

• The next algorithm shows why.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 602

The Majority Vote Algorithm

Suppose L is decided by N by majority (1/2) + ε.

1: for i = 1, 2, . . . , 2k + 1 do

2: Run N on input x;

3: end for

4: if “yes” is the majority answer then

5: “yes”;

6: else

7: “no”;

8: end if

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 603

Analysis

• The running time remains polynomial: 2k + 1 times N ’s

running time.

• By Corollary 75 (p. 600), the probability of a false

answer is at most e−ε2k.

• By taking k = � 2/ε2 �, the error probability is at most

1/4.

• Even if ε is any inverse polynomial, k remains a

polynomial in n.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 604

Aspects of BPP

• BPP is the most comprehensive yet plausible notion of

efficient computation.

– If a problem is in BPP, we take it to mean that the

problem can be solved efficiently.

– In this aspect, BPP has effectively replaced P.

• (RP ∪ coRP) ⊆ (NP ∪ coNP).

• (RP ∪ coRP) ⊆ BPP.

• Whether BPP ⊆ (NP ∪ coNP) is unknown.

• But it is unlikely that NP ⊆ BPP (see p. 622 and

p. 623).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 605

coBPP

• The definition of BPP is symmetric: acceptance by clear

majority and rejection by clear majority.

• An algorithm for L ∈ BPP becomes one for L̄ by

reversing the answer.

• So L̄ ∈ BPP and BPP ⊆ coBPP.

• Similarly coBPP ⊆ BPP.

• Hence BPP = coBPP.

• This approach does not work for RP.a

aIt did not work for NP either.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 606

BPP and coBPP

����� ���� ���� �����

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 607

BPP and P: Derandomization

Theorem 76 (Nisan and Wigderson (1994)) If every

language in BPP only needs a pseudorandom generator

which stretches a random seed of logarithmic length, then

BPP = P.

• We only need to show BPP ⊆ P.

• Run the BPP algorithm for each of the seeds.

– There are only 2O(logn) = O(nc) seeds, a polynomial

• Accept if and only if at least 3/4 of the outcomes is a

“yes.”

• The running time is deterministically polynomial.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 608

“The Good, the Bad, and the Ugly”

BPPP

ZPP

RPcoRP

NPcoNP

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 609

Circuit Complexity

• Circuit complexity is based on boolean circuits instead

of Turing machines.

• A boolean circuit with n inputs computes a boolean

function of n variables.

• Now, identify true/1 with “yes” and false/0 with “no.”

• Then a boolean circuit with n inputs accepts certain

strings in { 0, 1 }n.
• To relate circuits with an arbitrary language, we need

one circuit for each possible input length n.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 610

Formal Definitions

• The size of a circuit is the number of gates in it.

• A family of circuits is an infinite sequence

C = (C0, C1, . . .) of boolean circuits, where Cn has n

boolean inputs.

• For input x ∈ { 0, 1 }∗, C|x | outputs 1 if and only if

x ∈ L.

• In other words,

Cn accepts L ∩ { 0, 1 }n.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 611

Formal Definitions (concluded)

• L ⊆ { 0, 1 }∗ has polynomial circuits if there is a

family of circuits C such that:

– The size of Cn is at most p(n) for some fixed

polynomial p.

– Cn accepts L ∩ { 0, 1 }n.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 612

Exponential Circuits Suffice for All Languages

• Theorem 18 (p. 214) implies that there are languages

that cannot be solved by circuits of size 2n/(2n).

• But surprisingly, circuits of size 2n+2 can solve all

problems, decidable or otherwise!

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 613

Exponential Circuits Suffice for All Languages
(continued)

Proposition 77 All decision problems (decidable or

otherwise) can be solved by a circuit of size 2n+2.

• We will show that for any language L ⊆ { 0, 1 }∗,
L ∩ { 0, 1 }n can be decided by a circuit of size 2n+2.

• Define boolean function f : { 0, 1 }n → { 0, 1 }, where

f(x1x2 · · ·xn) =

⎧⎨
⎩

1 x1x2 · · ·xn ∈ L,

0 x1x2 · · ·xn �∈ L.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 614

The Proof (concluded)

• Clearly, any circuit that implements f decides

L ∩ { 0, 1 }n.
• Now,

f(x1x2 · · ·xn) = (x1 ∧ f(1x2 · · ·xn)) ∨ (¬x1 ∧ f(0x2 · · ·xn)).

• The circuit size s(n) for f(x1x2 · · ·xn) hence satisfies

s(n) = 4 + 2s(n− 1)

with s(1) = 1.

• Solve it to obtain s(n) = 5× 2n−1 − 4 ≤ 2n+2.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 615

The Circuit Complexity of P

Proposition 78 All languages in P have polynomial

circuits.

• Let L ∈ P be decided by a TM in time p(n).

• By Corollary 35 (p. 315), there is a circuit with

O(p(n)2) gates that accepts L ∩ { 0, 1 }n.
• The size of the circuit depends only on L and the length

of the input.

• The size of the circuit is polynomial in n.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 616

Polynomial Circuits vs. P

• Is the converse of Proposition 78 true?

– Do polynomial circuits accept only languages in P?

• No.

• Polynomial circuits can accept undecidable languages!

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 617

Languages That Polynomial Circuits Accept

• Let L ⊆ { 0, 1 }∗ be an undecidable language.

• Let U = { 1n : the binary expansion of n is in L }.a
– For example, 111111 ∈ U if 1012 ∈ L.

• U is also undecidable (prove it).

• U ∩ { 1 }n is accepted by the trivial circuit Cn that

outputs 1 if 1n ∈ U and outputs 0 if 1n �∈ U .b

• The family of circuits (C0, C1, . . .) is polynomial in size.

aAssume n’s leading bit is always 1 without loss of generality.
bWe may not know which is the case for general n.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 618

A Patch

• Despite the simplicity of a circuit, the previous

discussions imply the following:

– Circuits are not a realistic model of computation.

– Polynomial circuits are not a plausible notion of

efficient computation.

• What is missing?

• The effective and efficient constructibility of

C0, C1,

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 619

Uniformity

• A family (C0, C1, . . .) of circuits is uniform if there is a

logn-space bounded TM which on input 1n outputs Cn.

– Note that n is the length of the input to Cn.

– Circuits now cannot accept undecidable languages

(why?).

– The circuit family on p. 618 is not constructible by a

single Turing machine (algorithm).

• A language has uniformly polynomial circuits if

there is a uniform family of polynomial circuits that

decide it.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 620

Uniformly Polynomial Circuits and P

Theorem 79 L ∈ P if and only if L has uniformly

polynomial circuits.

• One direction was proved in Proposition 78 (p. 616).

• Now suppose L has uniformly polynomial circuits.

• A TM decides x ∈ L in polynomial time as follows:

– Calculate n = |x |.
– Generate Cn in logn space, hence polynomial time.

– Evaluate the circuit with input x in polynomial time.

• Therefore L ∈ P.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 621

Relation to P vs. NP

• Theorem 79 implies that P �= NP if and only if

NP-complete problems have no uniformly polynomial

circuits.

• A stronger conjecture: NP-complete problems have no

polynomial circuits, uniformly or not.

• The above is currently the preferred approach to proving

P �= NP—without success so far.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 622

BPP’s Circuit Complexity

Theorem 80 (Adleman (1978)) All languages in BPP

have polynomial circuits.

• Our proof will be nonconstructive in that only the

existence of the desired circuits is shown.

– Recall our proof of Theorem 18 (p. 214).

– Something exists if its probability of existence is

nonzero.

• It is not known how to efficiently generate circuit Cn.

– If the construction of Cn can be made efficient, then

P = BPP, an unlikely result.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 623

The Proof

• Let L ∈ BPP be decided by a precise polynomial-time

NTM N by clear majority.

• We shall prove that L has polynomial circuits C0, C1,

– These deterministic circuits do not err.

• Suppose N runs in time p(n), where p(n) is a

polynomial.

• Let An = { a1, a2, . . . , am }, where ai ∈ { 0, 1 }p(n).
• Each ai ∈ An represents a sequence of nondeterministic

choices (i.e., a computation path) for N .

• Pick m = 12(n+ 1).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 624

The Proof (continued)

• Let x be an input with |x | = n.

• Circuit Cn simulates N on x with all sequences of

choices in An and then takes the majority of the m

outcomes.a

– Note that each An yields a circuit.

• As N with ai is a polynomial-time deterministic TM, it

can be simulated by polynomial circuits of size O(p(n)2).

– See the proof of Proposition 78 (p. 616).

aAs m is even, there may be no clear majority. Still, the probability

of that happening is very small and does not materially affect our general

conclusion. Thanks to a lively class discussion on December 14, 2010.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 625

The Circuit

�
�

�
�

�
� �

�

��������
����

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 626

The Proof (continued)

• The size of Cn is therefore O(mp(n)2) = O(np(n)2).

– This is a polynomial.

• We now confirm the existence of an An making Cn

correct on all n-bit inputs.

• Call ai bad if it leads N to an error (a false positive or a

false negative) for x.

• Select An uniformly randomly.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 627

The Proof (continued)

• For each x ∈ { 0, 1 }n, 1/4 of the computations of N are

erroneous.

• Because the sequences in An are chosen randomly and

independently, the expected number of bad ai’s is m/4.a

• By the Chernoff bound (p. 595), the probability that the

number of bad ai’s is m/2 or more is at most

e−m/12 < 2−(n+1).

• The error probability of using the majority rule is thus

< 2−(n+1) for each x ∈ { 0, 1 }n.
aSo the proof will not work for NP. Contributed by Mr. Ching-Hua

Yu (D00921025) on December 11, 2012.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 628

The Proof (continued)

• The probability that there is an x such that An results

in an incorrect answer is

< 2n2−(n+1) = 2−1.

– Recall the union bound:

prob[A ∪B ∪ · · ·] ≤ prob[A] + prob[B] + · · ·
(Boole’s inequality).

• We just showed that at least half of them are correct.

• So with probability ≥ 0.5, a random An produces a

correct Cn for all inputs of length n.

– Of course, verifying this fact may take a long time.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 629

The Proof (concluded)

• Because this probability exceeds 0, an An that makes

majority vote work for all inputs of length n exists.

• Hence a correct Cn exists.a

• We have used the probabilistic method.b

• This result answers the question on p. 525 with a “yes.”

aQuine (1948), “To be is to be the value of a bound variable.”
bA counting argument in the probabilistic language.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 630

Leonard Adlemana (1945–)

aTuring Award (2002).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 631

Cryptography

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 632

Whoever wishes to keep a secret

must hide the fact that he possesses one.

— Johann Wolfgang von Goethe (1749–1832)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 633

Cryptography

• Alice (A) wants to send a message to Bob (B) over a

channel monitored by Eve (eavesdropper).

• The protocol should be such that the message is known

only to Alice and Bob.

• The art and science of keeping messages secure is

cryptography.

Alice �
Eve

Bob

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 634

Encryption and Decryption

• Alice and Bob agree on two algorithms E and D—the

encryption and the decryption algorithms.

• Both E and D are known to the public in the analysis.

• Alice runs E and wants to send a message x to Bob.

• Bob operates D.

• Privacy is assured in terms of two numbers e, d, the

encryption and decryption keys.

• Alice sends y = E(e, x) to Bob, who then performs

D(d, y) = x to recover x.

• x is called plaintext, and y is called ciphertext.a

aBoth “zero” and “cipher” come from the same Arab word.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 635

Some Requirements

• D should be an inverse of E given e and d.

• D and E must both run in (probabilistic) polynomial

time.

• Eve should not be able to recover x from y without

knowing d.

– As D is public, d must be kept secret.

– e may or may not be a secret.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 636

Degrees of Security

• Perfect secrecy: After a ciphertext is intercepted by

the enemy, the a posteriori probabilities of the plaintext

that this ciphertext represents are identical to the a

priori probabilities of the same plaintext before the

interception.

– The probability that plaintext P occurs is

independent of the ciphertext C being observed.

– So knowing C yields no advantage in recovering P .

• Such systems are said to be informationally secure.

• A system is computationally secure if breaking it is

theoretically possible but computationally infeasible.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 637

Conditions for Perfect Secrecya

• Consider a cryptosystem where:

– The space of ciphertext is as large as that of keys.

– Every plaintext has a nonzero probability of being

used.

• It is perfectly secure if and only if the following hold.

– A key is chosen with uniform distribution.

– For each plaintext x and ciphertext y, there exists a

unique key e such that E(e, x) = y.

aShannon (1949).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 638

The One-Time Pada

1: Alice generates a random string r as long as x;

2: Alice sends r to Bob over a secret channel;

3: Alice sends x⊕ r to Bob over a public channel;

4: Bob receives y;

5: Bob recovers x := y ⊕ r;

aMauborgne and Vernam (1917); Shannon (1949). It was allegedly

used for the hotline between Russia and U.S.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 639

Analysis

• The one-time pad uses e = d = r.

• This is said to be a private-key cryptosystem.

• Knowing x and knowing r are equivalent.

• Because r is random and private, the one-time pad

achieves perfect secrecy (see also p. 638).

• The random bit string must be new for each round of

communication.

– Cryptographically strong pseudorandom

generators require exchanging only the seed once.

• But the assumption of a private channel is problematic.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 640

Public-Key Cryptographya

• Suppose only d is private to Bob, whereas e is public

knowledge.

• Bob generates the (e, d) pair and publishes e.

• Anybody like Alice can send E(e, x) to Bob.

• Knowing d, Bob can recover x by D(d,E(e, x)) = x.

• The assumptions are complexity-theoretic.

– It is computationally difficult to compute d from e.

– It is computationally difficult to compute x from y

without knowing d.

aDiffie and Hellman (1976).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 641

Whitfield Diffie (1944–)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 642

Martin Hellman (1945–)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 643

Complexity Issues

• Given y and x, it is easy to verify whether E(e, x) = y.

• Hence one can always guess an x and verify.

• Cracking a public-key cryptosystem is thus in NP.

• A necessary condition for the existence of secure

public-key cryptosystems is P �= NP.

• But more is needed than P �= NP.

• For instance, it is not sufficient that D is hard to

compute in the worst case.

• It should be hard in “most” or “average” cases.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 644

One-Way Functions

A function f is a one-way function if the following hold.a

1. f is one-to-one.

2. For all x ∈ Σ∗, |x |1/k ≤ |f(x)| ≤ |x |k for some k > 0.

• f is said to be honest.

3. f can be computed in polynomial time.

4. f−1 cannot be computed in polynomial time.

• Exhaustive search works, but it must be slow.

aDiffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann

and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe

(1985); Young (1983).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 645

Existence of One-Way Functions

• Even if P �= NP, there is no guarantee that one-way

functions exist.

• No functions have been proved to be one-way.

• Is breaking glass a one-way function?

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 646

Candidates of One-Way Functions

• Modular exponentiation f(x) = gx mod p, where g is a

primitive root of p.

– Discrete logarithm is hard.a

• The RSAb function f(x) = xe mod pq for an odd e

relatively prime to φ(pq).

– Breaking the RSA function is hard.

aConjectured to be 2n
ε
for some ε > 0 in both the worst-case sense

and average sense. Doable in time nO(log n) for finite fields of small char-

acteristic (Barbulescu, et al., 2013). It is in NP in some sense (Grollmann

and Selman, 1988).
bRivest, Shamir, and Adleman (1978).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 647

Candidates of One-Way Functions (concluded)

• Modular squaring f(x) = x2 mod pq.

– Determining if a number with a Jacobi symbol 1 is a

quadratic residue is hard—the quadratic

residuacity assumption (QRA).a

– Breaking it is as hard as factorization when

p ≡ q ≡ 3 mod 4.b

aDue to Gauss.
bRabin (1979).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 648

The Secret-Key Agreement Problem

• Exchanging messages securely using a private-key

cryptosystem requires Alice and Bob possessing the

same key (p. 640).

– An example is the r in the one-time pad (p. 639).

• How can they agree on the same secret key when the

channel is insecure?

• This is called the secret-key agreement problem.

• It was solved by Diffie and Hellman (1976) using

one-way functions.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 649

The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive

root g of p; {p and g are public.}
2: Alice chooses a large number a at random;

3: Alice computes α = ga mod p;

4: Bob chooses a large number b at random;

5: Bob computes β = gb mod p;

6: Alice sends α to Bob, and Bob sends β to Alice;

7: Alice computes her key βa mod p;

8: Bob computes his key αb mod p;

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 650

Analysis

• The keys computed by Alice and Bob are identical as

βa = gba = gab = αb mod p.

• To compute the common key from p, g, α, β is known as

the Diffie-Hellman problem.

• It is conjectured to be hard.

• If discrete logarithm is easy, then one can solve the

Diffie-Hellman problem.

– Because a and b can then be obtained by Eve.

• But the other direction is still open.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 651

The RSA Function

• Let p, q be two distinct primes.

• The RSA function is xe mod pq for an odd e relatively

prime to φ(pq).

– By Lemma 56 (p. 471),

φ(pq) = pq

(
1− 1

p

)(
1− 1

q

)
= pq − p− q + 1. (15)

• As gcd(e, φ(pq)) = 1, there is a d such that

ed ≡ 1 mod φ(pq),

which can be found by the Euclidean algorithm.a

aOne can think of d as e−1.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 652

A Public-Key Cryptosystem Based on RSA

• Bob generates p and q.

• Bob publishes pq and the encryption key e, a number

relatively prime to φ(pq).

– The encryption function is y = xe mod pq.

– Bob calculates φ(pq) by Eq. (15) (p. 652).

– Bob then calculates d such that ed = 1 + kφ(pq) for

some k ∈ Z.

• The decryption function is yd mod pq.

• It works because yd = xed = x1+kφ(pq) = x mod pq by

the Fermat-Euler theorem when gcd(x, pq) = 1 (p. 482).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 653

The “Security” of the RSA Function

• Factoring pq or calculating d from (e, pq) seems hard.a

• Breaking the last bit of RSA is as hard as breaking the

RSA.b

• Recommended RSA key sizes:c

– 1024 bits up to 2010.

– 2048 bits up to 2030.

– 3072 bits up to 2031 and beyond.

aSee also p. 478.
bAlexi, Chor, Goldreich, and Schnorr (1988).
cRSA (2003). RSA was acquired by EMC in 2006 for 2.1 billion US

dollars.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 654

The “Security” of the RSA Function (continued)

• Recall that problem A is “harder than” problem B if

solving A results in solving B.

– Factorization is “harder than” breaking the RSA.

– It is not hard to show that calculating Euler’s phi

functiona is “harder than” breaking the RSA.

– Factorization is “harder than” calculating Euler’s phi

function (see Lemma 56 on p. 471).

– So factorization is harder than calculating Euler’s phi

function, which is harder than breaking the RSA.

aWhen the input is not factorized!

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 655

The “Security” of the RSA Function (concluded)

• Factorization cannot be NP-hard unless NP = coNP.a

• So breaking the RSA is unlikely to imply P = NP.

• But numbers can be factorized efficiently by quantum

computers.b

• RSA was alleged to have received 10 million US dollars

from the government to promote unsecure p and q!c

aBrassard (1979).
bShor (1994).
cMenn (2013).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 656

Adi Shamir, Ron Rivest, and Leonard Adleman

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 657

Ron Rivesta (1947–)

aTuring Award (2002).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 658

Adi Shamira (1952–)

aTuring Award (2002).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 659

A Parallel History

• Diffie and Hellman’s solution to the secret-key

agreement problem led to public-key cryptography.

• At around the same time (or earlier) in Britain, the

RSA public-key cryptosystem was invented first before

the Diffie-Hellman secret-key agreement scheme was.

– Ellis, Cocks, and Williamson of the Communications

Electronics Security Group of the British Government

Communications Head Quarters (GCHQ).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 660

Is a forged signature the same sort of thing

as a genuine signature,

or is it a different sort of thing?

— Gilbert Ryle (1900–1976),

The Concept of Mind (1949)

“Katherine, I gave him the code.

He verified the code.”

“But did you verify him?”

— The Numbers Station (2013)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 661

