
Exponents and Primitive Roots

• From Fermat’s “little” theorem, all exponents divide

p− 1.

• A primitive root of p is thus a number with exponent

p− 1.

• Let R(k) denote the total number of residues in

Φ(p) = {1, 2, . . . , p− 1} that have exponent k.

• We already knew that R(k) = 0 for k � |(p− 1).

• So ∑
k | (p−1)

R(k) = p− 1

as every number has an exponent.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 486

Size of R(k)

• Any a ∈ Φ(p) of exponent k satisfies

xk = 1 mod p.

• By Lemma 61 (p. 485) there are at most k residues of

exponent k, i.e., R(k) ≤ k.

• Let s be a residue of exponent k.

• 1, s, s2, . . . , sk−1 are distinct modulo p.

– Otherwise, si ≡ sj mod p with i < j.

– Then sj−i = 1 mod p with j − i < k, a contradiction.

• As all these k distinct numbers satisfy xk = 1 mod p,

they comprise all the solutions of xk = 1 mod p.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 487

Size of R(k) (continued)

• But do all of them have exponent k (i.e., R(k) = k)?

• And if not (i.e., R(k) < k), how many of them do?

• Pick s�, where � < k.

• Suppose � �∈ Φ(k) with gcd(�, k) = d > 1.

• Then

(s�)k/d = (sk)�/d = 1 mod p.

• Therefore, s� has exponent at most k/d < k.

• So s� has exponent k only if � ∈ Φ(k).

• We conclude that

R(k) ≤ φ(k).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 488

Size of R(k) (concluded)

• Because all p− 1 residues have an exponent,

p− 1 =
∑

k | (p−1)

R(k) ≤
∑

k | (p−1)

φ(k) = p− 1

by Lemma 58 (p. 472).

• Hence

R(k) =

⎧⎨
⎩

φ(k) when k | (p− 1)

0 otherwise

• In particular, R(p− 1) = φ(p− 1) > 0, and p has at least

one primitive root.

• This proves one direction of Theorem 53 (p. 457).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 489

A Few Calculations

• Let p = 13.

• From p. 482 φ(p− 1) = 4.

• Hence R(12) = 4.

• Indeed, there are 4 primitive roots of p.

• As

Φ(p− 1) = {1, 5, 7, 11},
the primitive roots are

g1, g5, g7, g11,

where g is any primitive root.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 490

The Other Direction of Theorem 53 (p. 457)

• We show p is a prime if there is a number r such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q �= 1 mod p for all prime divisors q of p− 1.

• Suppose p is not a prime.

• We proceed to show that no primitive roots exist.

• Suppose rp−1 = 1 mod p (note gcd(r, p) = 1).

• We will show that the 2nd condition must be violated.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 491

The Proof (continued)

• So we proceed to show r(p−1)/q = 1 mod p for some

prime divisor q of p− 1.

• rφ(p) = 1 mod p by the Fermat-Euler theorem (p. 482).

• Because p is not a prime, φ(p) < p− 1.

• Let k be the smallest integer such that rk = 1 mod p.

• With the 1st condition, it is easy to show that k | (p− 1)

(similar to p. 485).

• Note that k |φ(p) (p. 485).
• As k ≤ φ(p), k < p− 1.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 492

The Proof (concluded)

• Let q be a prime divisor of (p− 1)/k > 1.

• Then k | (p− 1)/q.

• By the definition of k,

r(p−1)/q = 1 mod p.

• But this violates the 2nd condition.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 493

Function Problems

• Decision problems are yes/no problems (sat, tsp (d),

etc.).

• Function problems require a solution (a satisfying

truth assignment, a best tsp tour, etc.).

• Optimization problems are clearly function problems.

• What is the relation between function and decision

problems?

• Which one is harder?

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 494

Function Problems Cannot Be Easier than Decision
Problems

• If we know how to generate a solution, we can solve the

corresponding decision problem.

– If you can find a satisfying truth assignment

efficiently, then sat is in P.

– If you can find the best tsp tour efficiently, then tsp

(d) is in P.

• But decision problems can be as hard as the

corresponding function problems.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 495

fsat

• fsat is this function problem:

– Let φ(x1, x2, . . . , xn) be a boolean expression.

– If φ is satisfiable, then return a satisfying truth

assignment.

– Otherwise, return “no.”

• We next show that if sat ∈ P, then fsat has a

polynomial-time algorithm.

• sat is a subroutine (black box) that returns “yes” or

“no” on the satisfiability of the input.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 496

An Algorithm for fsat Using sat
1: t := ε; {Truth assignment.}
2: if φ ∈ sat then

3: for i = 1, 2, . . . , n do

4: if φ[xi = true] ∈ sat then

5: t := t ∪ { xi = true };
6: φ := φ[xi = true];

7: else

8: t := t ∪ { xi = false };
9: φ := φ[xi = false];

10: end if

11: end for

12: return t;

13: else

14: return “no”;

15: end if

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 497

Analysis

• If sat can be solved in polynomial time, so can fsat.

– There are ≤ n+ 1 calls to the algorithm for sat.a

– Boolean expressions shorter than φ are used in each

call to the algorithm for sat.

• Hence sat and fsat are equally hard (or easy).

• Note that this reduction from fsat to sat is not a Karp

reduction (recall p. 266 and p. 270).

• Instead, it calls sat multiple times as a subroutine, and

its answers guide the search on the computation tree.

aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 498

tsp and tsp (d) Revisited

• We are given n cities 1, 2, . . . , n and integer distances

dij = dji between any two cities i and j.

• tsp (d) asks if there is a tour with a total distance at

most B.

• tsp asks for a tour with the shortest total distance.

– The shortest total distance is at most
∑

i,j dij .

∗ Recall that the input string contains d11, . . . , dnn.

∗ Thus the shortest total distance is less than 2| x | in
magnitude, where x is the input (why?).

• We next show that if tsp (d) ∈ P, then tsp has a

polynomial-time algorithm.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 499

An Algorithm for tsp Using tsp (d)

1: Perform a binary search over interval [0, 2|x |] by calling

tsp (d) to obtain the shortest distance, C;

2: for i, j = 1, 2, . . . , n do

3: Call tsp (d) with B = C and dij = C + 1;

4: if “no” then

5: Restore dij to old value; {Edge [i, j] is critical.}
6: end if

7: end for

8: return the tour with edges whose dij ≤ C;

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 500

Analysis

• An edge which is not on any remaining optimal tours

will be eliminated, with its dij set to C + 1.

• So the algorithm ends with n edges which are not

eliminated (why?).

• This is true even if there are multiple optimal tours!a

aThanks to a lively class discussion on November 12, 2013.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 501

Analysis (concluded)

• There are O(|x |+n2) calls to the algorithm for tsp (d).

• Each call has an input length of O(|x |).
• So if tsp (d) can be solved in polynomial time, so can

tsp.

• Hence tsp (d) and tsp are equally hard (or easy).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 502

Randomized Computation

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 503

I know that half my advertising works,

I just don’t know which half.

— John Wanamaker

I know that half my advertising is

a waste of money,

I just don’t know which half!

— McGraw-Hill ad.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 504

Randomized Algorithmsa

• Randomized algorithms flip unbiased coins.

• There are important problems for which there are no

known efficient deterministic algorithms but for which

very efficient randomized algorithms exist.

– Extraction of square roots, for instance.

• There are problems where randomization is necessary.

– Secure protocols.

• Randomized version can be more efficient.

– Parallel algorithms for maximal independent set.b

aRabin (1976); Solovay and Strassen (1977).
b“Maximal” (a local maximum) not “maximum” (a global maximum).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 505

“Four Most Important Randomized Algorithms”a

1. Primality testing.b

2. Graph connectivity using random walks.c

3. Polynomial identity testing.d

4. Algorithms for approximate counting.e

aTrevisan (2006).
bRabin (1976); Solovay and Strassen (1977).
cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
dSchwartz (1980); Zippel (1979).
eSinclair and Jerrum (1989).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 506

Bipartite Perfect Matching

• We are given a bipartite graph G = (U, V,E).

– U = {u1, u2, . . . , un}.
– V = {v1, v2, . . . , vn}.
– E ⊆ U × V .

• We are asked if there is a perfect matching.

– A permutation π of {1, 2, . . . , n} such that

(ui, vπ(i)) ∈ E

for all i ∈ {1, 2, . . . , n}.
• A perfect matching contains n edges.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 507

A Perfect Matching in a Bipartite Graph

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 508

Symbolic Determinants

• We are given a bipartite graph G.

• Construct the n× n matrix AG whose (i, j)th entry AG
ij

is a symbolic variable xij if (ui, vj) ∈ E and 0 otherwise:

AG
ij =

⎧⎨
⎩

xij , if (ui, vj) ∈ E,

0, othersie.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 509

Symbolic Determinants (continued)

• The matrix for the bipartite graph G on p. 508 isa

AG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

aThe idea is similar to the Tanner graph in coding theory by Tanner

(1981).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 510

Symbolic Determinants (concluded)

• The determinant of AG is

det(AG) =
∑
π

sgn(π)
n∏

i=1

AG
i,π(i). (8)

– π ranges over all permutations of n elements.

– sgn(π) is 1 if π is the product of an even number of

transpositions and −1 otherwise.

– Equivalently, sgn(π) = 1 if the number of (i, j)s such

that i < j and π(i) > π(j) is even.a

• det(AG) contains n! terms, many of which may be 0s.

aContributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 511

Determinant and Bipartite Perfect Matching

• In
∑

π sgn(π)
∏n

i=1 A
G
i,π(i), note the following:

– Each summand corresponds to a possible perfect

matching π.

– Nonzero summands
∏n

i=1A
G
i,π(i) are distinct

monomials and will not cancel.

• det(AG) is essentially an exhaustive enumeration.

Proposition 62 (Edmonds (1967)) G has a perfect

matching if and only if det(AG) is not identically zero.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 512

Perfect Matching and Determinant (p. 508)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 513

Perfect Matching and Determinant (concluded)

• The matrix is (p. 510)

AG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

• det(AG) = −x14x22x35x43x51 + x13x22x35x44x51 +

x14x22x31x43x55 − x13x22x31x44x55.

• Each nonzero term denotes a perfect matching, and vice

versa.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 514

How To Test If a Polynomial Is Identically Zero?

• det(AG) is a polynomial in n2 variables.

• It has, potentially, exponentially many terms.

• Expanding the determinant polynomial is thus infeasible.

• If det(AG) ≡ 0, then it remains zero if we substitute

arbitrary integers for the variables x11, . . . , xnn.

• When det(AG) �≡ 0, what is the likelihood of obtaining a

zero?

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 515

Number of Roots of a Polynomial

Lemma 63 (Schwartz (1980)) Let p(x1, x2, . . . , xm) �≡ 0

be a polynomial in m variables each of degree at most d. Let

M ∈ Z
+. Then the number of m-tuples

(x1, x2, . . . , xm) ∈ {0, 1, . . . ,M − 1}m

such that p(x1, x2, . . . , xm) = 0 is

≤ mdMm−1.

• By induction on m (consult the textbook).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 516

Density Attack

• The density of roots in the domain is at most

mdMm−1

Mm
=

md

M
. (9)

• So suppose p(x1, x2, . . . , xm) �≡ 0.

• Then a random

(x1, x2, . . . , xm) ∈ { 0, 1, . . . ,M − 1 }m

has a probability of ≤ md/M of being a root of p.

• Note that M is under our control!

– One can raise M to lower the error probability, e.g.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 517

Density Attack (concluded)

Here is a sampling algorithm to test if p(x1, x2, . . . , xm) �≡ 0.

1: Choose i1, . . . , im from {0, 1, . . . ,M − 1} randomly;

2: if p(i1, i2, . . . , im) �= 0 then

3: return “p is not identically zero”;

4: else

5: return “p is (probably) identically zero”;

6: end if

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 518

Analysis

• If p(x1, x2, . . . , xm) ≡ 0 , the algorithm will always be

correct as p(i1, i2, . . . , im) = 0.

• Suppose p(x1, x2, . . . , xm) �≡ 0.

– The algorithm will answer incorrectly with

probability at most md/M by Eq. (9) on p. 517.

• We next return to the original problem of bipartite

perfect matching.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 519

A Randomized Bipartite Perfect Matching Algorithma

1: Choose n2 integers i11, . . . , inn from {0, 1, . . . , 2n2 − 1}
randomly; {So M = 2n2.}

2: Calculate det(AG(i11, . . . , inn)) by Gaussian elimination;

3: if det(AG(i11, . . . , inn)) �= 0 then

4: return “G has a perfect matching”;

5: else

6: return “G has (probably) no perfect matchings”;

7: end if

aLovász (1979). According to Paul Erdős, Lovász wrote his first sig-

nificant paper “at the ripe old age of 17.”

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 520

Analysis

• If G has no perfect matchings, the algorithm will always

be correct as det(AG(i11, . . . , inn)) = 0.

• Suppose G has a perfect matching.

– The algorithm will answer incorrectly with

probability at most md/M = 0.5 with m = n2, d = 1

and M = 2n2 in Eq. (9) on p. 517.

• Run the algorithm independently k times.

• Output “G has no perfect matchings” if and only if all

say “(probably) no perfect matchings.”

• The error probability is now reduced to at most 2−k.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 521

Lószló Lovász (1948–)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 522

Remarksa

• Note that we are calculating

prob[algorithm answers “no” |G has no perfect matchings],

prob[algorithm answers “yes” |G has a perfect matching].

• We are not calculatingb

prob[G has no perfect matchings | algorithm answers “no”],

prob[G has a perfect matching | algorithm answers “yes”].

aThanks to a lively class discussion on May 1, 2008.
bNumerical Recipes in C (1988), “statistics is not a branch of math-

ematics!”

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 523

But How Large Can det(AG(i11, . . . , inn)) Be?

• It is at most

n!
(
2n2

)n
.

• Stirling’s formula says n! ∼ √
2πn (n/e)n.

• Hence

log2 det(A
G(i11, . . . , inn)) = O(n log2 n)

bits are sufficient for representing the determinant.

• We skip the details about how to make sure that all

intermediate results are of polynomial sizes.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 524

An Intriguing Questiona

• Is there an (i11, . . . , inn) that will always give correct

answers for the algorithm on p. 520?

• A theorem on p. 625 shows that such an (i11, . . . , inn)

exists!

– Whether it can be found efficiently is another matter.

• Once (i11, . . . , inn) is available, the algorithm can be

made deterministic.

aThanks to a lively class discussion on November 24, 2004.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 525

Randomization vs. Nondeterminisma

• What are the differences between randomized algorithms

and nondeterministic algorithms?

• One can think of a randomized algorithm as a

nondeterministic algorithm but with a probability

associated with every guess/branch.

• So each computation path of a randomized algorithm

has a probability associated with it.

aContributed by Mr. Olivier Valery (D01922033) and Mr. Hasan Al-

hasan (D01922034) on November 27, 2012.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 526

Monte Carlo Algorithmsa

• The randomized bipartite perfect matching algorithm is

called a Monte Carlo algorithm in the sense that

– If the algorithm finds that a matching exists, it is

always correct (no false positives).

– If the algorithm answers in the negative, then it may

make an error (false negatives).

aMetropolis and Ulam (1949).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 527

Monte Carlo Algorithms (continued)

• The algorithm makes a false negative with probability

≤ 0.5.a

– Note this probability refers tob

prob[algorithm answers “no” |G has a perfect matching]

not

prob[G has a perfect matching | algorithm answers “no”].

aEquivalently, among the coin flip sequences, at most half of them

lead to the wrong answer.
bIn general, prob[algorithm answers “no” | input is a “yes” instance].

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 528

Monte Carlo Algorithms (concluded)

• This probability 0.5 is not over the space of all graphs or

determinants, but over the algorithm’s own coin flips.

– It holds for any bipartite graph.

• In contrast, to calculate

prob[G has a perfect matching | algorithm answers “no”],

we will need the distribution of G.

• But it is an empirical statement that is very hard to

verify.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 529

The Markov Inequalitya

Lemma 64 Let x be a random variable taking nonnegative

integer values. Then for any k > 0,

prob[x ≥ kE[x]] ≤ 1/k.

• Let pi denote the probability that x = i.

E[x] =
∑
i

ipi =
∑

i<kE[x]

ipi +
∑

i≥kE[x]

ipi

≥
∑

i≥kE[x]

ipi ≥ kE[x]
∑

i≥kE[x]

pi

≥ kE[x]× prob[x ≥ kE[x]].

aAndrei Andreyevich Markov (1856–1922).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 530

Andrei Andreyevich Markov (1856–1922)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 531

An Application of Markov’s Inequality

• Suppose algorithm C runs in expected time T (n) and

always gives the right answer.

• Consider an algorithm that runs C for time kT (n) and

rejects the input if C does not stop within the time

bound.

– Here, we treat C as a black box without going into

its internal code.a

• By Markov’s inequality, this new algorithm runs in time

kT (n) and gives the wrong answer with probability

≤ 1/k.

aContributed by Mr. Hsien-Chun Huang (R03922103) on December 2,

2014.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 532

An Application of Markov’s Inequality (concluded)

• By running this algorithm m times (the total running

time is mkT (n)), we reduce the error probability to

≤ k−m.a

• Suppose, instead, we run the algorithm for the same

running time mkT (n) once and rejects the input if it

does not stop within the time bound.

• By Markov’s inequality, this new algorithm gives the

wrong answer with probability ≤ 1/(mk).

• This is much worse than the previous algorithm’s error

probability of ≤ k−m for the same amount of time.

aWith the same input. Thanks to a question on December 7, 2010.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 533

fsat for k-sat Formulas (p. 496)

• Let φ(x1, x2, . . . , xn) be a k-sat formula.

• If φ is satisfiable, then return a satisfying truth

assignment.

• Otherwise, return “no.”

• We next propose a randomized algorithm for this

problem.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 534

A Random Walk Algorithm for φ in CNF Form

1: Start with an arbitrary truth assignment T ;

2: for i = 1, 2, . . . , r do

3: if T |= φ then

4: return “φ is satisfiable with T”;

5: else

6: Let c be an unsatisfied clause in φ under T ; {All of

its literals are false under T .}
7: Pick any x of these literals at random;

8: Modify T to make x true;

9: end if

10: end for

11: return “φ is unsatisfiable”;

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 535

3sat vs. 2sat Again

• Note that if φ is unsatisfiable, the algorithm will answer

“unsatisfiable.”

• The random walk algorithm needs expected exponential

time for 3sat.

– In fact, it runs in expected O((1.333 · · ·+ ε)n) time

with r = 3n,a much better than O(2n).b

• We will show immediately that it works well for 2sat.

• The state of the art as of 2006 is expected O(1.322n)

time for 3sat and expected O(1.474n) time for 4sat.c

aUse this setting per run of the algorithm.
bSchöning (1999).
cKwama and Tamaki (2004); Rolf (2006).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 536

Random Walk Works for 2sata

Theorem 65 Suppose the random walk algorithm with

r = 2n2 is applied to any satisfiable 2sat problem with n

variables. Then a satisfying truth assignment will be

discovered with probability at least 0.5.

• Let T̂ be a truth assignment such that T̂ |= φ.

• Assume our starting T differs from T̂ in i values.

– Their Hamming distance is i.

– Recall T is arbitrary.

aPapadimitriou (1991).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 537

The Proof

• Let t(i) denote the expected number of repetitions of the

flipping stepa until a satisfying truth assignment is

found.

• It can be shown that t(i) is finite.

• t(0) = 0 because it means that T = T̂ and hence T |= φ.

• If T �= T̂ or any other satisfying truth assignment, then

we need to flip the coin at least once.

• We flip a coin to pick among the 2 literals of a clause

not satisfied by the present T .

• At least one of the 2 literals is true under T̂ because T̂

satisfies all clauses.
aThat is, Statement 7.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 538

The Proof (continued)

• So we have at least 0.5 chance of moving closer to T̂ .

• Thus

t(i) ≤ t(i− 1) + t(i+ 1)

2
+ 1

for 0 < i < n.

– Inequality is used because, for example, T may differ

from T̂ in both literals.

• It must also hold that

t(n) ≤ t(n− 1) + 1

because at i = n, we can only decrease i.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 539

The Proof (continued)

• Now, put the necessary relations together:

t(0) = 0, (10)

t(i) ≤ t(i− 1) + t(i+ 1)

2
+ 1, 0 < i < n, (11)

t(n) ≤ t(n− 1) + 1. (12)

• Technically, this is a one-dimensional random walk with

an absorbing barrier at i = 0 and a reflecting barrier at

i = n (if we replace “≤” with “=”).a

aThe proof in the textbook does exactly that. But a student pointed

out difficulties with this proof technique on December 8, 2004. So our

proof here uses the original inequalities.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 540

The Proof (continued)

• Add up the relations for

2t(1), 2t(2), 2t(3), . . . , 2t(n− 1), t(n) to obtaina

2t(1) + 2t(2) + · · ·+ 2t(n− 1) + t(n)

≤ t(0) + t(1) + 2t(2) + · · ·+ 2t(n− 2) + 2t(n− 1) + t(n)

+2(n− 1) + 1.

• Simplify it to yield

t(1) ≤ 2n− 1. (13)

aAdding up the relations for t(1), t(2), t(3), . . . , t(n−1) will also work,

thanks to Mr. Yen-Wu Ti (D91922010).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 541

The Proof (continued)

• Add up the relations for 2t(2), 2t(3), . . . , 2t(n− 1), t(n)

to obtain

2t(2) + · · ·+ 2t(n− 1) + t(n)

≤ t(1) + t(2) + 2t(3) + · · ·+ 2t(n− 2) + 2t(n− 1) + t(n)

+2(n− 2) + 1.

• Simplify it to yield

t(2) ≤ t(1) + 2n− 3 ≤ 2n− 1 + 2n− 3 = 4n− 4

by Eq. (13) on p. 541.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 542

The Proof (continued)

• Continuing the process, we shall obtain

t(i) ≤ 2in− i2.

• The worst upper bound happens when i = n, in which

case

t(n) ≤ n2.

• We conclude that

t(i) ≤ t(n) ≤ n2

for 0 ≤ i ≤ n.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 543

The Proof (concluded)

• So the expected number of steps is at most n2.

• The algorithm picks r = 2n2.

– This amounts to invoking the Markov inequality

(p. 530) with k = 2, resulting in a probability of 0.5.a

• The proof does not yield a polynomial bound for 3sat.b

aRecall p. 532.
bContributed by Mr. Cheng-Yu Lee (R95922035) on November 8,

2006.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 544

Boosting the Performance

• We can pick r = 2mn2 to have an error probability of

≤ 1

2m

by Markov’s inequality.

• Alternatively, with the same running time, we can run

the “r = 2n2” algorithm m times.

• The error probability is now reduced to

≤ 2−m.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 545

