
integer programming

• integer programming asks whether a system of linear

inequalities with integer coefficients has an integer

solution.

• In contrast, linear programming asks whether a

system of linear inequalities with integer coefficients has

a rational solution.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 434

integer programming Is NP-Completea

• set covering can be expressed by the inequalities

Ax ≥ �1,
∑n

i=1 xi ≤ B, 0 ≤ xi ≤ 1, where

– xi is one if and only if Si is in the cover.

– A is the matrix whose columns are the bit vectors of

the sets S1, S2,

– �1 is the vector of 1s.

– The operations in Ax are standard matrix operations.

• This shows integer programming is NP-hard.

• Many NP-complete problems can be expressed as an

integer programming problem.

aKarp (1972); Papadimitriou (1981).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 435

Christos Papadimitriou (1949–)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 436

Easier or Harder?a

• Adding restrictions on the allowable problem instances

will not make a problem harder.

– We are now solving a subset of problem instances or

special cases.

– The independent set proof (p. 364) and the

knapsack proof (p. 417): equally hard.

– circuit value to monotone circuit value

(p. 317): equally hard.

– sat to 2sat (p. 344): easier.

aThanks to a lively class discussion on October 29, 2003.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 437

Easier or Harder? (concluded)

• Adding restrictions on the allowable solutions (the

solution space) may make a problem harder, equally

hard, or easier.

• It is problem dependent.

– min cut to bisection width (p. 392): harder.

– linear programming to integer programming

(p. 434): harder.

– sat to naesat (equally hard by p. 357) and max

cut to max bisection (p. 390): equally hard.

– 3-coloring to 2-coloring (p. 401): easier.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 438

coNP and Function Problems

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 439

coNP

• NP is the class of problems that have succinct

certificates (recall Proposition 38 on p. 329).

• By definition, coNP is the class of problems whose

complement is in NP.

• coNP is therefore the class of problems that have

succinct disqualifications:

– A “no” instance of a problem in coNP possesses a

short proof of its being a “no” instance.

– Only “no” instances have such proofs.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 440

coNP (continued)

• Suppose L is a coNP problem.

• There exists a polynomial-time nondeterministic

algorithm M such that:

– If x ∈ L, then M(x) = “yes” for all computation

paths.

– If x �∈ L, then M(x) = “no” for some computation

path.

• Note that if we swap “yes” and “no” of M , the new

algorithm M ′ decides L̄ ∈ NP in the classic sense (p.

103).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 441

���

� ∉ �

���

��

���

��

���

� ∈ �

���

���

���

���

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 442

coNP (continued)

• So there are 3 major approaches to proving L ∈ coNP.

1. Prove L̄ ∈ NP.

2. Prove that only “no” instances possess short proofs.

3. Write an algorithm for it directly.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 443

coNP (concluded)

• Clearly P ⊆ coNP.

• It is not known if

P = NP ∩ coNP.

– Contrast this with

R = RE ∩ coRE

(see Proposition 14 on p. 169).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 444

Some coNP Problems

• validity ∈ coNP.

– If φ is not valid, it can be disqualified very succinctly:

a truth assignment that does not satisfy it.

• sat complement ∈ coNP.

– sat complement is the complement of sat.

– The disqualification is a truth assignment that

satisfies it.

• hamiltonian path complement ∈ coNP.

– The disqualification is a Hamiltonian path.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 445

Some coNP Problems (concluded)

• optimal tsp (d) ∈ coNP.

– optimal tsp (d) asks if the optimal tour has a total

distance of B, where B is an input.a

– The disqualification is a tour with a length < B.

aDefined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 446

A Nondeterministic Algorithm for sat complement
(See also p. 113)

φ is a boolean formula with n variables.

1: for i = 1, 2, . . . , n do

2: Guess xi ∈ {0, 1}; {Nondeterministic choice.}
3: end for

4: {Verification:}
5: if φ(x1, x2, . . . , xn) = 1 then

6: “no”;

7: else

8: “yes”;

9: end if

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 447

Analysis

• The algorithm decides language {φ : φ is unsatisfiable}.
– The computation tree is a complete binary tree of

depth n.

– Every computation path corresponds to a particular

truth assignment out of 2n.

– φ is unsatisfiable if and only if every truth

assignment falsifies φ.

– But every truth assignment falsifies φ if and only if

every computation path results in “yes.”

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 448

An Alternative Characterization of coNP

Proposition 50 Let L ⊆ Σ∗ be a language. Then L ∈ coNP

if and only if there is a polynomially decidable and

polynomially balanced relation R such that

L = {x : ∀y (x, y) ∈ R}.
(As on p. 328, we assume | y | ≤ |x |k for some k.)

• L̄ = {x : ∃y (x, y) ∈ ¬R}.
• Because ¬R remains polynomially balanced, L̄ ∈ NP by

Proposition 38 (p. 329).

• Hence L ∈ coNP by definition.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 449

coNP-Completeness

Proposition 51 L is NP-complete if and only if its

complement L̄ = Σ∗ − L is coNP-complete.

Proof (⇒; the ⇐ part is symmetric)

• Let L̄′ be any coNP language.

• Hence L′ ∈ NP.

• Let R be the reduction from L′ to L.

• So x ∈ L′ if and only if R(x) ∈ L.

• By the law of transposition, x �∈ L′ if and only if

R(x) �∈ L.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 450

coNP Completeness (concluded)

• So x ∈ L̄′ if and only if R(x) ∈ L̄.

• The same R is a reduction from L̄′ to L̄.

• This shows L̄ is coNP-hard.

• But L̄ ∈ coNP.

• This shows L̄ is coNP-complete.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 451

Some coNP-Complete Problems

• sat complement is coNP-complete.

• validity is coNP-complete.

– φ is valid if and only if ¬φ is not satisfiable.

– The reduction from sat complement to validity

is hence easy.

• hamiltonian path complement is coNP-complete.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 452

Possible Relations between P, NP, coNP

1. P = NP = coNP.

2. NP = coNP but P �= NP.

3. NP �= coNP and P �= NP.

• This is the current “consensus.”a

aCarl Gauss (1777–1855), “I could easily lay down a multitude of such

propositions, which one could neither prove nor dispose of.”

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 453

The Primality Problem

• An integer p is prime if p > 1 and all positive numbers

other than 1 and p itself cannot divide it.

• primes asks if an integer N is a prime number.

• Dividing N by 2, 3, . . . ,
√
N is not efficient.

– The length of N is only logN , but
√
N = 20.5 logN .

– It is an exponential-time algorithm.

• A polynomial-time algorithm for primes was not found

until 2002 by Agrawal, Kayal, and Saxena!

• The running time is Õ(log7.5 N).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 454

1: if n = ab for some a, b > 1 then

2: return “composite”;

3: end if

4: for r = 2, 3, . . . , n − 1 do

5: if gcd(n, r) > 1 then

6: return “composite”;

7: end if

8: if r is a prime then

9: Let q be the largest prime factor of r − 1;

10: if q ≥ 4
√
r logn and n(r−1)/q �= 1 mod r then

11: break; {Exit the for-loop.}
12: end if

13: end if

14: end for{r − 1 has a prime factor q ≥ 4
√
r logn.}

15: for a = 1, 2, . . . , 2
√
r logn do

16: if (x − a)n �= (xn − a) mod (xr − 1) in Zn[x] then

17: return “composite”;

18: end if

19: end for

20: return “prime”; {The only place with “prime” output.}

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 455

The Primality Problem (concluded)

• Later, we will focus on efficient “randomized” algorithms

for primes (used in Mathematica, e.g.).

• NP ∩ coNP is the class of problems that have succinct

certificates and succinct disqualifications.

– Each “yes” instance has a succinct certificate.

– Each “no” instance has a succinct disqualification.

– No instances have both.

• We will see that primes ∈ NP ∩ coNP.

– In fact, primes ∈ P as mentioned earlier.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 456

Primitive Roots in Finite Fields

Theorem 52 (Lucas and Lehmer (1927)) a A number

p > 1 is a prime if and only if there is a number 1 < r < p

such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q �= 1 mod p for all prime divisors q of p− 1.

• This r is called the primitive root or generator.

• We will prove the theorem later.b

aFrançois Edouard Anatole Lucas (1842–1891); Derrick Henry

Lehmer (1905–1991).
bSee pp. 469ff.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 457

Derrick Lehmera (1905–1991)

aInventor of the linear congruential generator in 1951.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 458

Pratt’s Theorem

Theorem 53 (Pratt (1975)) primes ∈ NP ∩ coNP.

• primes is in coNP because a succinct disqualification is

a proper divisor.

– A proper divisor of a number n means n is not a

prime.

• Now suppose p is a prime.

• p’s certificate includes the r in Theorem 52 (p. 457).

• Use recursive doubling to check if rp−1 = 1 mod p in

time polynomial in the length of the input, log2 p.

– r, r2, r4, . . . mod p, a total of ∼ log2 p steps.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 459

The Proof (concluded)

• We also need all prime divisors of p− 1: q1, q2, . . . , qk.

– Whether r, q1, . . . , qk are easy to find is irrelevant.

– There may be multiple choices for r.

• Checking r(p−1)/qi �= 1 mod p is also easy.

• Checking q1, q2, . . . , qk are all the divisors of p− 1 is easy.

• We still need certificates for the primality of the qi’s.

• The complete certificate is recursive and tree-like:

C(p) = (r; q1, C(q1), q2, C(q2), . . . , qk, C(qk)). (4)

• We next prove that C(p) is succinct.

• As a result, C(p) can be checked in polynomial time.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 460

The Succinctness of the Certificate

Lemma 54 The length of C(p) is at most quadratic at

5 log22 p.

• This claim holds when p = 2 or p = 3.

• In general, p− 1 has k ≤ log2 p prime divisors

q1 = 2, q2, . . . , qk.

– Reason:

2k ≤
k∏

i=1

qi ≤ p− 1.

• Note also that, as q1 = 2,

k∏
i=2

qi ≤ p− 1

2
. (5)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 461

The Proof (continued)

• C(p) requires:

– 2 parentheses;

– 2k < 2 log2 p separators (at most 2 log2 p bits);

– r (at most log2 p bits);

– q1 = 2 and its certificate 1 (at most 5 bits);

– q2, . . . , qk (at most 2 log2 p bits);a

– C(q2), . . . , C(qk).

aWhy?

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 462

The Proof (concluded)

• C(p) is succinct because, by induction,

|C(p)| ≤ 5 log2 p+ 5 + 5
k∑

i=2

log22 qi

≤ 5 log2 p+ 5 + 5

(
k∑

i=2

log2 qi

)2

≤ 5 log2 p+ 5 + 5 log22
p− 1

2
by inequality (5)

< 5 log2 p+ 5 + 5[(log2 p)− 1]2

= 5 log22 p+ 10− 5 log2 p ≤ 5 log22 p

for p ≥ 4.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 463

A Certificate for 23a

• Note that 5 is a primitive root modulo 23 and

23− 1 = 22 = 2× 11.b

• So

C(23) = (5; 2, C(2), 11, C(11)).

• Note that 2 is a primitive root modulo 11 and

11− 1 = 10 = 2× 5.

• So

C(11) = (2; 2, C(2), 5, C(5)).

aThanks to a lively discussion on April 24, 2008.
bOther primitive roots are 7, 10, 11, 14, 15, 17, 19, 20, 21.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 464

A Certificate for 23 (concluded)

• Note that 2 is a primitive root modulo 5 and

5− 1 = 4 = 22.

• So

C(5) = (2; 2, C(2)).

• In summary,

C(23) = (5; 2, C(2), 11, (2; 2, C(2), 5, (2; 2, C(2)))).

– In Mathematica, PrimeQCertificate[23] yields

{23, 5, {2, {11, 2, {2, {5, 2, {2}}}}}}

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 465

Turning the Proof into an Algorithma

• How to turn the proof into a polynomial-time

nondeterministic algorithm?

• First, guess a log2 p-bit number r.

• Then guess up to log2 p log2 p-bit numbers q1, q2, . . . , qk.

• Then recursively do the same thing for each of the qi to

form a certificate (4) on p. 460.

• Finally check if the two conditions of Theorem 52 (p.

457) hold throughout the tree.

aContributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on

November 24, 2015.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 466

Basic Modular Arithmeticsa

• Let m,n ∈ Z
+.

• m |n means m divides n; m is n’s divisor.

• We call the numbers 0, 1, . . . , n− 1 the residue modulo

n.

• The greatest common divisor of m and n is denoted

gcd(m,n).

• The r in Theorem 52 (p. 457) is a primitive root of p.

• We now prove the existence of primitive roots and then

Theorem 52 (p. 457).

aCarl Friedrich Gauss.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 467

Basic Modular Arithmetics (concluded)

• We use

a ≡ b mod n

if n | (a− b).

– So 25 ≡ 38 mod 13.

• We use

a = b mod n

if b is the remainder of a divided by n.

– So 25 = 12 mod 13.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 468

Euler’sa Totient or Phi Function

• Let

Φ(n) = {m : 1 ≤ m < n, gcd(m,n) = 1}
be the set of all positive integers less than n that are

prime to n.b

– Φ(12) = {1, 5, 7, 11}.
• Define Euler’s function of n to be φ(n) = |Φ(n) |.
• φ(p) = p− 1 for prime p, and φ(1) = 1 by convention.

• Euler’s function is not expected to be easy to compute

without knowing n’s factorization.

aLeonhard Euler (1707–1783).
bZ∗

n is an alternative notation.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 469

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 470

Two Properties of Euler’s Function

The inclusion-exclusion principlea can be used to prove the

following.

Lemma 55 φ(n) = n
∏

p|n(1− 1
p).

• If n = pe11 pe22 · · · pe�� is the prime factorization of n, then

φ(n) = n
�∏

i=1

(
1− 1

pi

)
.

Corollary 56 φ(mn) = φ(m)φ(n) if gcd(m,n) = 1.

aConsult any textbooks on discrete mathematics.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 471

A Key Lemma

Lemma 57
∑

m|n φ(m) = n.

• Let n =
∏�

i=1 p
ki
i be the prime factorization of n and

consider

�∏
i=1

[φ(1) + φ(pi) + · · ·+ φ(pki

i)]. (6)

• Equation (6) equals n because φ(pki) = pki − pk−1
i by

Lemma 55 (p. 471) so φ(1) + φ(pi) + · · ·+ φ(pki
i) = pki

i .

• Expand Eq. (6) to yield

n =
∑

k′
1≤k1,...,k′

�≤k�

�∏
i=1

φ(p
k′
i

i).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 472

The Proof (concluded)

• By Corollary 56 (p. 471),

�∏
i=1

φ(p
k′
i

i) = φ

(
�∏

i=1

p
k′
i

i

)
.

• So Eq. (6) becomes

n =
∑

k′
1≤k1,...,k′

�≤k�

φ

(
�∏

i=1

p
k′
i

i

)
.

• Each
∏�

i=1 p
k′
i

i is a unique divisor of n =
∏�

i=1 p
ki
i .

• Equation (6) becomes ∑
m|n

φ(m).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 473

Leonhard Euler (1707–1783)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 474

The Density Attack for primes

Witnesses to
compositeness

of n

All numbers < n

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 475

The Density Attack for primes

1: Pick k ∈ {1, . . . , n} randomly;

2: if k |n and k �= 1 and k �= n then

3: return “n is composite”;

4: else

5: return “n is (probably) a prime”;

6: end if

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 476

The Density Attack for primes (continued)

• It works, but does it work well?

• The ratio of numbers ≤ n relatively prime to n (the

white ring) is
φ(n)

n
.

• When n = pq, where p and q are distinct primes,

φ(n)

n
=

pq − p− q + 1

pq
> 1− 1

q
− 1

p
.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 477

The Density Attack for primes (concluded)

• So the ratio of numbers ≤ n not relatively prime to n

(the grey area) is < (1/q) + (1/p).

– The “density attack” has probability about 2/
√
n of

factoring n = pq when p ∼ q = O(
√
n).

– The “density attack” to factor n = pq hence takes

Ω(
√
n) steps on average when p ∼ q = O(

√
n).

– This running time is exponential: Ω(20.5 log2 n).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 478

The Chinese Remainder Theorem

• Let n = n1n2 · · ·nk, where ni are pairwise relatively

prime.

• For any integers a1, a2, . . . , ak, the set of simultaneous

equations

x = a1 mod n1,

x = a2 mod n2,

...

x = ak mod nk,

has a unique solution modulo n for the unknown x.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 479

Fermat’s “Little” Theorema

Lemma 58 For all 0 < a < p, ap−1 = 1 mod p.

• Recall Φ(p) = {1, 2, . . . , p− 1}.
• Consider aΦ(p) = {am mod p : m ∈ Φ(p)}.
• aΦ(p) = Φ(p).

– aΦ(p) ⊆ Φ(p) as a remainder must be between 1 and

p− 1.

– Suppose am ≡ am′ mod p for m > m′, where
m,m′ ∈ Φ(p).

– That means a(m−m′) = 0 mod p, and p divides a or

m−m′, which is impossible.

aPierre de Fermat (1601–1665).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 480

The Proof (concluded)

• Multiply all the numbers in Φ(p) to yield (p− 1)!.

• Multiply all the numbers in aΦ(p) to yield ap−1(p− 1)!.

• As aΦ(p) = Φ(p), we have

ap−1(p− 1)! ≡ (p− 1)! mod p.

• Finally, ap−1 = 1 mod p because p � |(p− 1)!.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 481

The Fermat-Euler Theorema

Corollary 59 For all a ∈ Φ(n), aφ(n) = 1 mod n.

• The proof is similar to that of Lemma 58 (p. 480).

• Consider aΦ(n) = {am mod n : m ∈ Φ(n)}.
• aΦ(n) = Φ(n).

– aΦ(n) ⊆ Φ(n) as a remainder must be between 0 and

n− 1 and relatively prime to n.

– Suppose am ≡ am′ mod n for m′ < m < n, where

m,m′ ∈ Φ(n).

– That means a(m−m′) = 0 mod n, and n divides a or

m−m′, which is impossible.
aProof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on Novem-

ber 24, 2004.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 482

The Proof (concluded)a

• Multiply all the numbers in Φ(n) to yield
∏

m∈Φ(n) m.

• Multiply all the numbers in aΦ(n) to yield

aφ(n)
∏

m∈Φ(n) m.

• As aΦ(n) = Φ(n),

∏
m∈Φ(n)

m ≡ aφ(n)

⎛
⎝ ∏

m∈Φ(n)

m

⎞
⎠ mod n.

• Finally, aφ(n) = 1 mod n because n � | ∏m∈Φ(n) m.

aSome typographical errors corrected by Mr. Jung-Ying Chen

(D95723006) on November 18, 2008.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 483

An Example

• As 12 = 22 × 3,

φ(12) = 12×
(
1− 1

2

)(
1− 1

3

)
= 4.

• In fact, Φ(12) = {1, 5, 7, 11}.
• For example,

54 = 625 = 1 mod 12.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 484

Exponents

• The exponent of m ∈ Φ(p) is the least k ∈ Z
+ such that

mk = 1 mod p.

• Every residue s ∈ Φ(p) has an exponent.

– 1, s, s2, s3, . . . eventually repeats itself modulo p, say

si ≡ sj mod p, which means sj−i = 1 mod p.

• If the exponent of m is k and m� = 1 mod p, then k | �.
– Otherwise, � = qk + a for 0 < a < k, and

m� = mqk+a ≡ ma ≡ 1 mod p, a contradiction.

Lemma 60 Any nonzero polynomial of degree k has at most

k distinct roots modulo p.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 485

