
min cut and max cut

• A cut in an undirected graph G = (V,E) is a partition

of the nodes into two nonempty sets S and V − S.

• The size of a cut (S, V − S) is the number of edges

between S and V − S.

• min cut ∈ P by the maxflow algorithm.a

• max cut asks if there is a cut of size at least K.

– K is part of the input.

aIn time O(|V | · |E |) by Orlin (2012).
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A Cut of Size 4
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min cut and max cut (concluded)

• max cut has applications in circuit layout.

– The minimum area of a VLSI layout of a graph is not

less than the square of its maximum cut size.a

aRaspaud, Sýkora, and Vrťo (1995); Mak and Wong (2000).
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max cut Is NP-Completea

• We will reduce naesat to max cut.

• Given a 3sat formula φ with m clauses, we shall

construct a graph G = (V,E) and a goal K.

• Furthermore, there is a cut of size at least K if and only

if φ is nae-satisfiable.

• Our graph will have multiple edges between two nodes.

– Each such edge contributes one to the cut if its nodes

are separated.

aKarp (1972); Garey, Johnson, and Stockmeyer (1976).
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The Proof

• Suppose φ’s m clauses are C1, C2, . . . , Cm.

• The boolean variables are x1, x2, . . . , xn.

• G has 2n nodes: x1, x2, . . . , xn,¬x1,¬x2, . . . ,¬xn.

• Each clause with 3 distinct literals makes a triangle in G.

• For each clause with two identical literals, there are two

parallel edges between the two distinct literals.
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The Proof (continued)

• No need to consider clauses with one literal (why?).

• No need to consider clauses containing two opposite

literals xi and ¬xi (why?).

• For each variable xi, add ni copies of edge [xi,¬xi],

where ni is the number of occurrences of xi and ¬xi in φ.

• Note that
n∑

i=1

ni = 3m.

– The summation is simply the total number of literals.
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The Proof (continued)

• Set K = 5m.

• Suppose there is a cut (S, V − S) of size 5m or more.

• A clause (a triangle or two parallel edges) contributes at

most 2 to a cut no matter how you split it.

• Suppose some xi and ¬xi are on the same side of the

cut.

• They together contribute (at most) 2ni edges to the cut.

– They appear in (at most) ni different clauses.

– A clause contributes at most 2 to a cut.
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The Proof (continued)

• Either xi or ¬xi contributes at most ni to the cut by the

pigeonhole principle.

• Changing the side of that literal does not decrease the

size of the cut.

• Hence we assume variables are separated from their

negations.

• The total number of edges in the cut that join opposite

literals xi and ¬xi is
∑n

i=1 ni.

• But
∑n

i=1 ni = 3m.
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The Proof (concluded)

• The remaining K − 3m ≥ 2m edges in the cut must

come from the m triangles or parallel edges that

correspond to the clauses.

• Each can contribute at most 2 to the cut.a

• So all are split.

• A split clause means at least one of its literals is true

and at least one false.

• The other direction is left as an exercise.

aSo K = 5m.
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This Cut Does Not Meet the Goal K = 5× 3 = 15
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• (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

• The cut size is 13 < 15.
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This Cut Meets the Goal K = 5× 3 = 15
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• (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

• The cut size is now 15.
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Remarks

• We had proved that max cut is NP-complete for

multigraphs.

• How about proving the same thing for simple graphs?a

• How to modify the proof to reduce 4sat to max cut?b

• All NP-complete problems are mutually reducible by

definition.c

– So they are equally hard in this sense.d

aContributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.
bContributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.
cContributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
dContributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
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max bisection

• max cut becomes max bisection if we require that

|S | = |V − S |.
• It has many applications, especially in VLSI layout.
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max bisection Is NP-Complete

• We shall reduce the more general max cut to max

bisection.

• Add |V | = n isolated nodes to G to yield G′.

• G′ has 2n nodes.

• G′’s goal K is identical to G’s

– As the new nodes have no edges, they contribute 0 to

the cut.

• This completes the reduction.
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The Proof (concluded)

• Every cut (S, V − S) of G = (V,E) can be made into a

bisection by appropriately allocating the new nodes

between S and V − S.

• Hence each cut of G can be made a cut of G′ of the
same size, and vice versa.
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bisection width

• bisection width is like max bisection except that it

asks if there is a bisection of size at most K (sort of min

bisection).

• Unlike min cut, bisection width is NP-complete.

• We reduce max bisection to bisection width.

• Given a graph G = (V,E), where |V | is even, we
generate the complement of G.

• Given a goal of K, we generate a goal of n2 −K.a

a|V | = 2n.
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The Proof (concluded)

• To show the reduction works, simply notice the following

easily verifiable claims.

– A graph G = (V,E), where |V | = 2n, has a bisection

of size K if and only if the complementa of G has a

bisection of size n2 −K.

– So G has a bisection of size ≥ K if and only if its

complement has a bisection of size ≤ n2 −K.

aRecall p. 374.
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hamiltonian path Is NP-Completea

Theorem 45 Given an undirected graph, the question

whether it has a Hamiltonian path is NP-complete.

aKarp (1972).
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A Hamiltonian Path at IKEA, Covina, California?
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tsp (d) Is NP-Complete

Corollary 46 tsp (d) is NP-complete.

• Consider a graph G with n nodes.

• Create a weighted complete graph G′ with the same

nodes as G.

• Set dij = 1 on G′ if [ i, j ] ∈ G and dij = 2 on G′ if
[ i, j ] �∈ G.

– Note that G′ is a complete graph.

• Set the budget B = n+ 1.

• This completes the reduction.
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tsp (d) Is NP-Complete (continued)

• Suppose G′ has a tour of distance at most n+ 1.a

• Then that tour on G′ must contain at most one edge

with weight 2.

• If a tour on G′ contains one edge with weight 2, remove

that edge to arrive at a Hamiltonian path for G.

• Suppose a tour on G′ contains no edge with weight 2.

• Remove any edge to arrive at a Hamiltonian path for G.

aA tour is a cycle, not a path.
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tsp (d) Is NP-Complete (concluded)

• On the other hand, suppose G has a Hamiltonian path.

• There is a tour on G′ containing at most one edge with

weight 2.

– Start with a Hamiltonian path and then close the

loop.

• The total cost is then at most (n− 1) + 2 = n+ 1 = B.

• We conclude that there is a tour of length B or less on

G′ if and only if G has a Hamiltonian path.
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Random tsp

• Suppose each distance dij is picked uniformly and

independently from the interval [ 0, 1 ].

• It is known that the total distance of the shortest tour

has a mean value of β
√
n for some positive β.

• In fact, the total distance of the shortest tour deviates

from the mean by more than t with probability at most

e−t2/(4n)!a

aDubhashi and Panconesi (2012).
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Graph Coloring

• k-coloring: Can the nodes of a graph be colored with

≤ k colors such that no two adjacent nodes have the

same color?a

• 2-coloring is in P (why?).

• But 3-coloring is NP-complete (see next page).

• k-coloring is NP-complete for k ≥ 3 (why?).

• exact-k-coloring asks if the nodes of a graph can be

colored using exactly k colors.

• It remains NP-complete for k ≥ 3 (why?).

ak is not part of the input; k is part of the problem statement.
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3-coloring Is NP-Completea

• We will reduce naesat to 3-coloring.

• We are given a set of clauses C1, C2, . . . , Cm each with 3

literals.

• The boolean variables are x1, x2, . . . , xn.

• We shall construct a graph G that can be colored with

colors { 0, 1, 2 } if and only if all the clauses can be

nae-satisfied.

aKarp (1972).
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The Proof (continued)

• Every variable xi is involved in a triangle [ a, xi,¬xi ]

with a common node a.

• Each clause Ci = (ci1 ∨ ci2 ∨ ci3) is also represented by a

triangle

[ ci1, ci2, ci3 ].

– Node cij and a node in an a-triangle [ a, xk,¬xk ]

with the same label represent distinct nodes.

• There is an edge between cij and the node that

represents the jth literal of Ci.
a

aAlternative proof: There is an edge between ¬cij and the node

that represents the jth literal of Ci. Contributed by Mr. Ren-Shuo Liu

(D98922016) on October 27, 2009.
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Construction for · · · ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ · · ·
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The Proof (continued)

Suppose the graph is 3-colorable.

• Assume without loss of generality that node a takes the

color 2.

• A triangle must use up all 3 colors.

• As a result, one of xi and ¬xi must take the color 0 and

the other 1.
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The Proof (continued)

• Treat 1 as true and 0 as false.a

– We are dealing with the a-triangles here, not the

clause triangles yet.

• The resulting truth assignment is clearly contradiction

free.

• As each clause triangle contains one color 1 and one

color 0, the clauses are nae-satisfied.

aThe opposite also works.
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The Proof (continued)

Suppose the clauses are nae-satisfiable.

• Color node a with color 2.

• Color the nodes representing literals by their truth

values (color 0 for false and color 1 for true).

– We are dealing with the a-triangles here, not the

clause triangles.
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The Proof (continued)

• For each clause triangle:

– Pick any two literals with opposite truth values.a

– Color the corresponding nodes with 0 if the literal is

true and 1 if it is false.

– Color the remaining node with color 2.

aBreak ties arbitrarily.
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The Proof (concluded)

• The coloring is legitimate.

– If literal w of a clause triangle has color 2, then its

color will never be an issue.

– If literal w of a clause triangle has color 1, then it

must be connected up to literal w with color 0.

– If literal w of a clause triangle has color 0, then it

must be connected up to literal w with color 1.
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Algorithms for 3-coloring and the Chromatic
Number χ(G)

• Assume G is 3-colorable.

• There is a classic algorithm that finds a 3-coloring in

time O(3n/3) = 1.4422n.a

• It can be improved to O(1.3289n).b

aLawler (1976).
bBeigel and Eppstein (2000).
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Algorithms for 3-coloring and the Chromatic
Number χ(G) (concluded)

• The chromatic number χ(G) is the smallest number

of colors needed to color a graph G.

• There is an algorithm to find χ(G) in time

O((4/3)n/3) = 2.4422n.a

• It can be improved to O((4/3 + 34/3/4)n) = O(2.4150n)b

and 2nnO(1).c

• Computing χ(G) cannot be easier than 3-coloring.d

aLawler (1976).
bEppstein (2003).
cKoivisto (2006).
dContributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.
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tripartite matching

• We are given three sets B, G, and H, each containing n

elements.

• Let T ⊆ B ×G×H be a ternary relation.

• tripartite matching asks if there is a set of n triples

in T , none of which has a component in common.

– Each element in B is matched to a different element

in G and different element in H.

Theorem 47 (Karp (1972)) tripartite matching is

NP-complete.
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Related Problems

• We are given a family F = {S1, S2, . . . , Sn} of subsets of

a finite set U and a budget B.

• set covering asks if there exists a set of B sets in F

whose union is U .

• set packing asks if there are B disjoint sets in F .

• Assume |U | = 3m for some m ∈ N and |Si| = 3 for all i.

• exact cover by 3-sets asks if there are m sets in F

that are disjoint (so have U as their union).
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SET COVERING SET PACKING
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Related Problems (concluded)

Corollary 48 (Karp (1972)) set covering, set

packing, and exact cover by 3-sets are all

NP-complete.

• set covering is used to prove that the influence

maximization problem in social networks is

NP-complete.a

aKempe, Kleinberg, and Tardos (2003).
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knapsack

• There is a set of n items.

• Item i has value vi ∈ Z
+ and weight wi ∈ Z

+.

• We are given K ∈ Z
+ and W ∈ Z

+.

• knapsack asks if there exists a subset

I ⊆ {1, 2, . . . , n}
such that

∑
i∈I wi ≤ W and

∑
i∈I vi ≥ K.

– We want to achieve the maximum satisfaction within

the budget.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 416



knapsack Is NP-Completea

• knapsack ∈ NP: Guess an I and check the constraints.

• We shall reduce exact cover by 3-sets to knapsack,

in which vi = wi for all i and K = W .

• The simplified knapsack now asks if a subset of

v1, v2, . . . , vn adds up to exactly K.b

– Picture yourself as a radio DJ.

aKarp (1972).
bThis problem is called subset sum.
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The Proof (continued)

• The primary differences between the two problems are:a

– Sets vs. numbers.

– Union vs. addition.

• We are given a family F = {S1, S2, . . . , Sn} of size-3

subsets of U = {1, 2, . . . , 3m}.
• exact cover by 3-sets asks if there are m disjoint

sets in F that cover the set U .

aThanks to a lively class discussion on November 16, 2010.
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The Proof (continued)

• Think of a set as a bit vector in {0, 1}3m.

– Assume m = 3.

– 110010000 means the set {1, 2, 5}.
– 001100010 means the set {3, 4, 8}.

• Assume there are n = 5 size-3 subsets in F .

• Our goal is
3m︷ ︸︸ ︷

1 1 · · · 1 .
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The Proof (continued)

• A bit vector can also be seen as a binary number.

• Set union resembles addition:

001100010

+ 110010000

111110010

which denotes the set {1, 2, 3, 4, 5, 8}, as desired.
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The Proof (continued)

• Trouble occurs when there is carry:

010000000

+ 010000000

100000000

which denotes the wrong set {1}, not the correct {2}.
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The Proof (continued)

• Or consider

001100010

+ 001110000

011010010

which denotes the set {2, 3, 5, 8}, not the correct

{3, 4, 5, 8}.a
aCorrected by Mr. Chihwei Lin (D97922003) on January 21, 2010.
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The Proof (continued)

• Carry may also lead to a situation where we obtain our

solution 1 1 · · · 1 with more than m sets in F .

• For example,

000100010

001110000

101100000

+ 000001101

111111111

• But the correct answer, {1, 3, 4, 5, 6, 7, 8, 9}, is not an

exact cover.
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The Proof (continued)

• And it uses 4 sets instead of the required m = 3.a

• To fix this problem, we enlarge the base just enough so

that there are no carries.b

• Because there are n vectors in total, we change the base

from 2 to n+ 1.

aThanks to a lively class discussion on November 20, 2002.
bYou cannot map ∪ to ∨ because knapsack requires + not ∨!
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The Proof (continued)

• Set vi to be the integer corresponding to the bit vector

encoding Si in base n+ 1:

vi =
∑
j∈Si

1× (n+ 1)3m−j (3)

• Set

K =
3m−1∑
j=0

1× (n+ 1)j =

3m︷ ︸︸ ︷
1 1 · · · 1 (base n+ 1).

• Now in base n+ 1, if there is a set S such that

∑
i∈S vi =

3m︷ ︸︸ ︷
1 1 · · · 1, then every position must be

contributed by exactly one vi and |S| = m.
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The Proof (continued)

• For example, the case on p. 423 becomes

000100010

001110000

101100000

+ 000001101

102311111

in base n+ 1 = 6.

• As desired, it no longer meets the goal.
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The Proof (continued)

• Suppose F admits an exact cover, say {S1, S2, . . . , Sm}.
• Then picking I = {1, 2, . . . ,m} clearly results in

v1 + v2 + · · ·+ vm =

3m︷ ︸︸ ︷
1 1 · · · 1 .

• It is important to note that the meaning of addition (+)

is independent of the base.a

– It is just regular addition.

– But an Si may give rise to different integers vi in Eq.

(3) on p. 425 under different bases.

aContributed by Mr. Kuan-Yu Chen (R92922047) on November 3,

2004.
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The Proof (concluded)

• On the other hand, suppose there exists an I such that

∑
i∈I

vi =

3m︷ ︸︸ ︷
1 1 · · · 1

in base n+ 1.

• The no-carry property implies that | I | = m and

{Si : i ∈ I}
is an exact cover.
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An Example

• Let m = 3, U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and
S1 = {1, 3, 4},
S2 = {2, 3, 4},
S3 = {2, 5, 6},
S4 = {6, 7, 8},
S5 = {7, 8, 9}.

• Note that n = 5, as there are 5 Si’s.
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An Example (continued)

• Our reduction produces

K =
3×3−1∑
j=0

6j =

3×3︷ ︸︸ ︷
1 1 · · · 16 = 201553910,

v1 = 101100000 = 1734048,

v2 = 011100000 = 334368,

v3 = 010011000 = 281448,

v4 = 000001110 = 258,

v5 = 000000111 = 43.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 430



An Example (concluded)

• Note v1 + v3 + v5 = K because

101100000

010011000

+ 000000111

111111111

• Indeed,

S1 ∪ S3 ∪ S5 = {1, 2, 3, 4, 5, 6, 7, 8, 9},
an exact cover by 3-sets.
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bin packing

• We are given N positive integers a1, a2, . . . , aN , an

integer C (the capacity), and an integer B (the number

of bins).

• bin packing asks if these numbers can be partitioned

into B subsets, each of which has total sum at most C.

• Think of packing bags at the check-out counter.

Theorem 49 bin packing is NP-complete.
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bin packing (concluded)

• But suppose a1, a2, . . . , aN are randomly distributed

between 0 and 1.

• Let B be the smallest number of unit-capacity bins

capable of holding them.

• Then B can deviate from its average by more than t

with probability at most 2e−2t2/N .a

aDubhashi and Panconesi (2012).
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