MIN CUT and MAX CUT

A cut in an undirected graph G = (V, E) is a partition

of the nodes into two nonempty sets S and V — S.

The size of a cut (5,V —.5) is the number of edges
between S and V' — §.

MIN CUT € P by the maxflow algorithm.?

MAX CUT asks if there is a cut of size at least K.

— K is part of the input.

2In time O(|V |- | E'|) by Orlin (2012).
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A Cut of Size 4

!
!
!

©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 376



MIN CUT and MAX CUT (concluded)

e MAX CUT has applications in circuit layout.

— The minimum area of a VLSI layout of a graph is not

less than the square of its maximum cut size.?

2Raspaud, Sykora, and Vrto (1995); Mak and Wong (2000).
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MAX CUT Is NP-Complete?

We will reduce NAESAT to MAX CUT.

Given a 3SAT formula ¢ with m clauses, we shall

construct a graph G = (V, E) and a goal K.

Furthermore, there is a cut of size at least K if and only
if ¢ is NAE-satisfiable.
Our graph will have multiple edges between two nodes.

— Each such edge contributes one to the cut if its nodes

are separated.

aKarp (1972); Garey, Johnson, and Stockmeyer (1976).
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The Proof

Suppose ¢’s m clauses are C1,Cs, ..., Cy,.

The boolean variables are x1, 2, ..., x,.

GG has 2n nodes: z1,x2,...,T,, X1, T, ..., L.

Each clause with 3 distinct literals makes a triangle in G.

For each clause with two identical literals, there are two

parallel edges between the two distinct literals.
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The Proof (continued)

No need to consider clauses with one literal (why?).

No need to consider clauses containing two opposite

literals x; and —x; (why?).

For each variable x;, add n; copies of edge |z;, —z;],

where n; is the number of occurrences of x; and —x; in ¢.

Note that

mn
g n; = Im.
i=1

— The summation is simply the total number of literals.
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The Proof (continued)

Set K = bm.
Suppose there is a cut (5, V — 9) of size 5m or more.

A clause (a triangle or two parallel edges) contributes at

most 2 to a cut no matter how you split it.

Suppose some z; and —x; are on the same side of the
cut.

They together contribute (at most) 2n; edges to the cut.
— They appear in (at most) n; different clauses.

— A clause contributes at most 2 to a cut.
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The Proof (continued)

Either x; or —x; contributes at most n; to the cut by the

pigeonhole principle.

Changing the side of that literal does not decrease the
size of the cut.

Hence we assume variables are separated from their

negations.

The total number of edges in the cut that join opposite

. . mn
literals x; and —x; is > . n;.

But >, n; = 3m.
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The Proof (concluded)

The remaining K — 3m > 2m edges in the cut must
come from the m triangles or parallel edges that

correspond to the clauses.
Each can contribute at most 2 to the cut.?
So all are split.

A split clause means at least one of its literals is true
and at least one false.

e The other direction is left as an exercise.

aSo K = 5m.
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This Cut Does Not Meet the Goal K =5 x 3 =15

o (x1 VoV A(xy V-3V -x3) A (-2 VT Vas).

e The cut size is 13 < 15.
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This Cut Meets the Goal K =5 x 3 =15

]
N

X3

o (x1 VoV A(xyV-x3Vx3) A (-2 VT Vas).

e The cut size is now 15.
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Remarks

We had proved that MAX cUT is NP-complete for
multigraphs.

How about proving the same thing for simple graphs??

How to modify the proof to reduce 4SAT to MAX CcUT?P

All NP-complete problems are mutually reducible by
definition.®

— So they are equally hard in this sense.?

2Contributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.

PContributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.
©Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

dContributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
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MAX BISECTION

e MAX CUT becomes MAX BISECTION if we require that

S| =V -S|

e It has many applications, especially in VLSI layout.
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MAX BISECTION Is NP-Complete

We shall reduce the more general MAX CUT to MAX
BISECTION.

Add |V| = n isolated nodes to G to yield G’.
G’ has 2n nodes.

G"’s goal K is identical to G’s

— As the new nodes have no edges, they contribute 0 to
the cut.

This completes the reduction.
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The Proof (concluded)
e Every cut (S,V —85) of G = (V, E) can be made into a

bisection by appropriately allocating the new nodes

between S and V — S.

e Hence each cut of G can be made a cut of G’ of the

same size, and vice versa.
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BISECTION WIDTH

BISECTION WIDTH is like MAX BISECTION except that it
asks if there is a bisection of size at most K (sort of MIN
BISECTION).

Unlike MIN CUT, BISECTION WIDTH is NP-complete.
We reduce MAX BISECTION to BISECTION WIDTH.

Given a graph G = (V, E), where |V | is even, we

generate the complement of GG.

e Given a goal of K, we generate a goal of n? — K.2

2|V | = 2n.
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The Proof (concluded)

e To show the reduction works, simply notice the following
easily verifiable claims.
— A graph G = (V, E), where |V| = 2n, has a bisection
of size K if and only if the complement® of G has a

bisection of size n? — K.

— So G has a bisection of size > K if and only if its
complement has a bisection of size < n? — K.

@Recall p. 374.
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HAMILTONIAN PATH Is NP-Complete®

Theorem 45 Given an undirected graph, the question

whether it has a Hamiltonian path is NP-complete.

aKarp (1972).
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A Hamiltonian Path at IKEA, Covina, California?

"
¢ BECROOMS

’
S '. KITCHENS & DINING
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| ]

@ CHILDREN'S IKEA
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TSP (D) Is NP-Complete

Corollary 46 TSP (D) is NP-complete.
e Consider a graph G with n nodes.

e Create a weighted complete graph G’ with the same

nodes as G.

Set dij =1lon G’ 1f[’l,,]] € G and dij =2 on G’ if
14,7 € G.
— Note that G’ is a complete graph.

Set the budget B =n + 1.

This completes the reduction.
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TSP (D) Is NP-Complete (continued)

Suppose G’ has a tour of distance at most n + 1.2

Then that tour on G’ must contain at most one edge
with weight 2.

If a tour on G’ contains one edge with weight 2, remove

that edge to arrive at a Hamiltonian path for G.
Suppose a tour on G’ contains no edge with weight 2.

e Remove any edge to arrive at a Hamiltonian path for G.

A tour is a cycle, not a path.
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TSP (D) Is NP-Complete (concluded)

On the other hand, suppose G has a Hamiltonian path.

There is a tour on G’ containing at most one edge with

weight 2.

— Start with a Hamiltonian path and then close the
loop.

The total cost is then at most (n —1)+2=n+1= B.

We conclude that there is a tour of length B or less on

G’ if and only if G has a Hamiltonian path.
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Random TSP

e Suppose each distance d;; is picked uniformly and

independently from the interval [0, 1].

e [t is known that the total distance of the shortest tour

has a mean value of 84/n for some positive S.

e In fact, the total distance of the shortest tour deviates

from the mean by more than ¢ with probability at most
e—t2/(4n)!a

2Dubhashi and Panconesi (2012).
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Graph Coloring

k-COLORING: Can the nodes of a graph be colored with
< k colors such that no two adjacent nodes have the

same color??

2-COLORING is in P (why?).

But 3-COLORING is NP-complete (see next page).
k-COLORING is NP-complete for k > 3 (why?).

EXACT-k-COLORING asks if the nodes of a graph can be

colored using exactly k£ colors.

e It remains NP-complete for k > 3 (why?).

2k is not part of the input; k is part of the problem statement.
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3-COLORING Is NP-Complete®

We will reduce NAESAT to 3-COLORING.

We are given a set of clauses C1,Cs, ..., C,, each with 3
literals.

The boolean variables are x1,xa,...,Z,.

We shall construct a graph G that can be colored with
colors {0,1,2} if and only if all the clauses can be
NAE-satisfied.

aKarp (1972).
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The Proof (continued)

e Every variable x; is involved in a triangle |a, x;, —x; |

with a common node a.

e Each clause C; = (¢;1 V ¢;2 V ¢;3) is also represented by a
triangle
[ i1, Ciz, Ci3 |-
— Node ¢;; and a node in an a-triangle | a, zj, ~zy |

with the same label represent distinct nodes.

e There is an edge between c¢;; and the node that
represents the jth literal of C;.?

2Alternative proof: There is an edge between —c;; and the node
that represents the jth literal of C;. Contributed by Mr. Ren-Shuo Liu
(D98922016) on October 27, 2009.
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Construction for --- A (z1 V —xo V —x3) A - -

a 2
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The Proof (continued)

Suppose the graph is 3-colorable.

e Assume without loss of generality that node a takes the
color 2.

e A triangle must use up all 3 colors.

e As a result, one of x; and —x; must take the color 0 and
the other 1.
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The Proof (continued)

e Treat 1 as true and 0 as false.?
— We are dealing with the a-triangles here, not the

clause triangles yet.

e The resulting truth assignment is clearly contradiction

free.

e As each clause triangle contains one color 1 and one

color 0, the clauses are NAE-satisfied.

@The opposite also works.
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The Proof (continued)

Suppose the clauses are NAE-satisfiable.
e Color node a with color 2.

e Color the nodes representing literals by their truth

values (color 0 for false and color 1 for true).

— We are dealing with the a-triangles here, not the

clause triangles.
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The Proof (continued)

e For each clause triangle:
— Pick any two literals with opposite truth values.?

— (Color the corresponding nodes with 0 if the literal is

true and 1 if it is false.

— Color the remaining node with color 2.

@Break ties arbitrarily.
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The Proof (concluded)

e The coloring is legitimate.

— If literal w of a clause triangle has color 2, then its

color will never be an issue.

— If literal w of a clause triangle has color 1, then it
must be connected up to literal w with color O.

— If literal w of a clause triangle has color 0, then it

must be connected up to literal w with color 1.
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Algorithms for 3-COLORING and the Chromatic
Number x(G)

e Assume G is 3-colorable.

e There is a classic algorithm that finds a 3-coloring in
time O(3"/3) = 1.44227 2

e It can be improved to O(1.3289™).P

aLawler (1976).
PBeigel and Eppstein (2000).
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Algorithms for 3-COLORING and the Chromatic
Number x(G) (concluded)

The chromatic number x(G) is the smallest number

of colors needed to color a graph G.

There is an algorithm to find x(G) in time
O((4/3)"/3) = 2.4422™ »

It can be improved to O((4/3 + 3%/3/4)") = 0(2.4150™)P
and 27n0) ¢

e Computing x(G) cannot be easier than 3-COLORING.4

aLawler (1976).

PEppstein (2003).

“Koivisto (2006).

dContributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.
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TRIPARTITE MATCHING

e We are given three sets B, G, and H, each containing n

elements.
e Let T'C B x G x H be a ternary relation.

e TRIPARTITE MATCHING asks if there is a set of n triples

in I, none of which has a component in common.

— Each element in B is matched to a different element

in G and different element in H.

Theorem 47 (Karp (1972)) TRIPARTITE MATCHING is
NP-complete.
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Related Problems

We are given a family F' = {51, 59,...,95,} of subsets of
a finite set U and a budget B.

SET COVERING asks if there exists a set of B sets in F

whose union is U.

SET PACKING asks if there are B disjoint sets in F'.

Assume |U| = 3m for some m € N and |S;| = 3 for all s.

EXACT COVER BY 3-SETS asks if there are m sets in F

that are disjoint (so have U as their union).
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SET COVERING SET PACKING
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Related Problems (concluded)

Corollary 48 (Karp (1972)) SET COVERING, SET
PACKING, and EXACT COVER BY 3-SETS are all
NP-complete.

e SET COVERING is used to prove that the influence
maximization problem in social networks is

NP-complete.?

aKempe, Kleinberg, and Tardos (2003).
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KNAPSACK
There is a set of n items.
Item ¢ has value v; € ZT and weight w; € Z™T.
We are given K € ZT and W € Z™.

KNAPSACK asks if there exists a subset

I1C{1,2,...,n}

such that » .., w; < W and ) .., v; > K.

— We want to achieve the maximum satisfaction within
the budget.
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KNAPSACK |s NP-Complete®

KNAPSACK € NP: Guess an I and check the constraints.

We shall reduce EXACT COVER BY 3-SETS to KNAPSACK,
in which v; = w; for all + and K = W.

e The simplified KNAPSACK now asks if a subset of

V1,Va, ..., U, adds up to exactly K.P

— Picture yourself as a radio DJ.

aKarp (1972).
PThis problem is called SUBSET SUM.
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The Proof (continued)

e The primary differences between the two problems are:®
— Sets vs. numbers.
— Union vs. addition.

e We are given a family F' = {S1,S5,,...,5,} of size-3
subsets of U = {1,2,...,3m}.

e EXACT COVER BY 3-SETS asks if there are m disjoint
sets in F' that cover the set U.

aThanks to a lively class discussion on November 16, 2010.
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The Proof (continued)

e Think of a set as a bit vector in {0, 1}3™.

— Assume m = 3.
— 110010000 means the set {1,2,5}.
— 001100010 means the set {3, 4, 8}.

e Assume there are n = 5 size-3 subsets in F.

e Our goal is
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The Proof (continued)

e A bit vector can also be seen as a binary number.

e Set union resembles addition:
001100010
+ 110010000

111110010
which denotes the set {1,2,3,4,5,8}, as desired.
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The Proof (continued)

e Trouble occurs when there is carry:

010000000
+ 010000000

100000000

which denotes the wrong set {1}, not the correct {2}.
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The Proof (continued)

e Or consider
001100010
+ 001110000

011010010

which denotes the set {2, 3,5,8}, not the correct
{3,4,5,8}.2

2Corrected by Mr. Chihwei Lin (D97922003) on January 21, 2010.
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The Proof (continued)

e Carry may also lead to a situation where we obtain our

solution 11---1 with more than m sets in F'.

e For example,

000100010
001110000
101100000
000001101

111111111

e But the correct answer, {1,3,4,5,6,7,8,9}, is not an

exact cover.
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The Proof (continued)

e And it uses 4 sets instead of the required m = 3.2

e To fix this problem, we enlarge the base just enough so

that there are no carries.P

e Because there are n vectors in total, we change the base
from 2 to n + 1.

@Thanks to a lively class discussion on November 20, 2002.
PYou cannot map U to V because KNAPSACK requires + not V!
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The Proof (continued)

e Set v; to be the integer corresponding to the bit vector

encoding S; in base n + 1:

(base n + 1).

e Now in base n + 1, if there is a set S such that

3m

—
> icgVi=11---1, then every position must be

contributed by exactly one v; and |S| = m.
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The Proof (continued)

e For example, the case on p. 423 becomes

000100010
001110000
101100000
000001101

102311111
in basen +1 = 6.

e As desired, it no longer meets the goal.
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The Proof (continued)

e Suppose F' admits an exact cover, say {S1,52,...,9nm}.

e Then picking I = {1,2,...,m} clearly results in

3m
—
m+vo+---+v,=11---1.

e [t is important to note that the meaning of addition (+)

is independent of the base.?
— It is just regular addition.

— But an S; may give rise to different integers v; in Eq.
(3) on p. 425 under different bases.

2Contributed by Mr. Kuan-Yu Chen (R92922047) on November 3,
2004.
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The Proof (concluded)

e On the other hand, suppose there exists an I such that

3m

» wy=11---1

icl
in base n 4+ 1.
e The no-carry property implies that | I | = m and

{SZZEI}

1S an exact cover.
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An Example

o Let m=3,U =1{1,2,3,4,5,6,7,8,9}, and

{1,3,4},
{2,3,4},
{2,5,6},
{6,7,8},
{7,8,9}.

e Note that n = 5, as there are 5 .5;’s.

©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 429



An Example (continued)

e Our reduction produces

3x3—1 _ A,
. —T1. 14 = 2015539,

j=0
101100000 = 1734048,

011100000 = 334368,
010011000 = 281448,
000001110 = 258,
000000111 = 43.
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An Example (concluded)

e Note v; + v3 + v5 = K because
101100000
010011000
000000111

111111111

e Indeed,
S1US3US5 =11,2,3,4,5,6,7,8,9},

an exact cover by 3-sets.
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BIN PACKING

e We are given N positive integers aq, as,...,an, an

integer C' (the capacity), and an integer B (the number
of bins).

e BIN PACKING asks if these numbers can be partitioned

into B subsets, each of which has total sum at most C.
e Think of packing bags at the check-out counter.

Theorem 49 BIN PACKING s NP-complete.
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BIN PACKING (concluded)

But suppose a1, a9, ...,an are randomly distributed

between 0 and 1.

Let B be the smallest number of unit-capacity bins

capable of holding them.

Then B can deviate from its average by more than ¢

with probability at most 2e~2¢ /N a

2Dubhashi and Panconesi (2012).
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