
De Morgan’s Lawsa

• De Morgan’s laws say that

¬(φ1 ∧ φ2) ≡ ¬φ1 ∨ ¬φ2,

¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2.

• Here is a proof of the first law:

φ1 φ2 ¬(φ1 ∧ φ2) ¬φ1 ∨ ¬φ2

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

aAugustus DeMorgan (1806–1871) or William of Ockham (1288–

1348).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 187

Conjunctive Normal Forms

• A boolean expression φ is in conjunctive normal

form (CNF) if

φ =

n∧
i=1

Ci,

where each clause Ci is the disjunction of zero or more

literals.a

– For example,

(x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (x2 ∨ x3).

• Convention: An empty CNF is satisfiable, but a CNF

containing an empty clause is not.

aImproved by Mr. Aufbu Huang (R95922070) on October 5, 2006.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 188

Disjunctive Normal Forms

• A boolean expression φ is in disjunctive normal form

(DNF) if

φ =
n∨

i=1

Di,

where each implicant Di is the conjunction of zero or

more literals.

– For example,

(x1 ∧ x2) ∨ (x1 ∧ ¬x2) ∨ (x2 ∧ x3).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 189

Clauses and Implicants

• The
∨

of clauses remains a clause.

– For example,

(x1 ∨ x2) ∨ (x1 ∨ ¬x2) ∨ (x2 ∨ x3)

= x1 ∨ x2 ∨ x1 ∨ ¬x2 ∨ x2 ∨ x3.

• The
∧

of implicants remains an implicant.

– For example,

(x1 ∧ x2) ∧ (x1 ∧ ¬x2) ∧ (x2 ∧ x3)

= x1 ∧ x2 ∧ x1 ∧ ¬x2 ∧ x2 ∧ x3.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 190

Any Expression φ Can Be Converted into CNFs and DNFs

φ = xj:

• This is trivially true.

φ = ¬φ1 and a CNF is sought:

• Turn φ1 into a DNF.

• Apply de Morgan’s laws to make a CNF for φ.

φ = ¬φ1 and a DNF is sought:

• Turn φ1 into a CNF.

• Apply de Morgan’s laws to make a DNF for φ.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 191

Any Expression φ Can Be Converted into CNFs and DNFs

(continued)

φ = φ1 ∨ φ2 and a DNF is sought:

• Make φ1 and φ2 DNFs.

φ = φ1 ∨ φ2 and a CNF is sought:

• Turn φ1 and φ2 into CNFs,a

φ1 =

n1∧
i=1

Ai, φ2 =

n2∧
j=1

Bj .

• Set

φ =

n1∧
i=1

n2∧
j=1

(Ai ∨Bj).

aCorrected by Mr. Chun-Jie Yang (R99922150) on November 9, 2010.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 192

Any Expression φ Can Be Converted into CNFs and DNFs

(concluded)

φ = φ1 ∧ φ2 and a CNF is sought:

• Make φ1 and φ2 CNFs.

φ = φ1 ∧ φ2 and a DNF is sought:

• Turn φ1 and φ2 into DNFs,

φ1 =

n1∨
i=1

Ai, φ2 =

n2∨
j=1

Bj .

• Set

φ =

n1∨
i=1

n2∨
j=1

(Ai ∧Bj).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 193

An Example: Turn ¬((a ∧ y) ∨ (z ∨ w)) into a DNF

¬((a ∧ y) ∨ (z ∨ w))

¬(CNF∨CNF)
= ¬(((a) ∧ (y)) ∨ ((z ∨ w)))

¬(CNF)
= ¬((a ∨ z ∨ w) ∧ (y ∨ z ∨ w))

de Morgan
= ¬(a ∨ z ∨ w) ∨ ¬(y ∨ z ∨ w)

de Morgan
= (¬a ∧ ¬z ∧ ¬w) ∨ (¬y ∧ ¬z ∧ ¬w).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 194

Functional Completeness

• A set of logical connectives is called functionally

complete if every boolean expression is equivalent to

one involving only these connectives.

• The set {¬,∨,∧} is functionally complete.

– Every boolean expression can be turned into a CNF,

which involves only ¬, ∨, and ∧.
• The sets {¬,∨} and {¬,∧} are functionally complete.

– By the above result and de Morgan’s laws.

• {nand } and {nor } are functionally complete.a

aPeirce (c. 1880) and Sheffer (1913).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 195

Satisfiability

• A boolean expression φ is satisfiable if there is a truth

assignment T appropriate to it such that T |= φ.

• φ is valid or a tautology,a written |= φ, if T |= φ for all

T appropriate to φ.

aWittgenstein (1889–1951) in 1922. Wittgenstein is one of the most

important philosophers of all time. Russell (1919), “The importance of

‘tautology’ for a definition of mathematics was pointed out to me by my

former pupil Ludwig Wittgenstein, who was working on the problem. I

do not know whether he has solved it, or even whether he is alive or

dead.” “God has arrived,” the great economist Keynes (1883–1946) said

of him on January 18, 1928. “I met him on the 5:15 train.”

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 196

Satisfiability (concluded)

• φ is unsatisfiable or a contradiction if φ is false

under all appropriate truth assignments.

– Or, equivalently, if ¬φ is valid (prove it).

• φ is a contingency if φ is neither a tautology nor a

contradiction.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 197

Ludwig Wittgenstein (1889–1951)

Wittgenstein (1922), “Whereof one

cannot speak, thereof one must be

silent.”

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 198

satisfiability (sat)

• The length of a boolean expression is the length of the

string encoding it.

• satisfiability (sat): Given a CNF φ, is it satisfiable?

• Solvable in exponential time on a TM by the truth table

method.

• Solvable in polynomial time on an NTM, hence in NP

(p. 113).

• A most important problem in settling the “P
?
= NP”

problem (p. 316).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 199

unsatisfiability (unsat or sat complement)
and validity

• unsat (sat complement): Given a boolean expression

φ, is it unsatisfiable?

• validity: Given a boolean expression φ, is it valid?

– φ is valid if and only if ¬φ is unsatisfiable.

– φ and ¬φ are basically of the same length.

– So unsat and validity have the same complexity.

• Both are solvable in exponential time on a TM by the

truth table method.

• Can we do better?

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 200

Relations among sat, unsat, and validity

ContingentValid Unsatisfiable

• The negation of an unsatisfiable expression is a valid

expression.

• None of the three problems—satisfiability,

unsatisfiability, validity—are known to be in P.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 201

Boolean Functions

• An n-ary boolean function is a function

f : {true, false}n → {true, false}.

• It can be represented by a truth table.

• There are 22
n

such boolean functions.

– We can assign true or false to f for each of the 2n

truth assignments.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 202

Boolean Functions (continued)

Assignment Truth value

1 true or false

2 true or false
...

...

2n true or false

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 203

Boolean Functions (continued)

• A boolean expression expresses a boolean function.

– Think of its truth value under all truth assignments.

• A boolean function expresses a boolean expression.

–
∨

T |= φ, literal yi is true in “row” T (y1 ∧ · · · ∧ yn).

∗ y1 ∧ · · · ∧ yn is called the minterm over

{x1, . . . , xn} for T .a

– The sizeb is ≤ n2n ≤ 22n.

aSimilar to programmable logic array.
bWe count only the literals here.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 204

Boolean Functions (continued)

x1 x2 f(x1, x2)

0 0 1

0 1 1

1 0 0

1 1 1

The corresponding boolean expression:

(¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205

Boolean Functions (concluded)

Corollary 17 Every n-ary boolean function can be

expressed by a boolean expression of size O(n2n).

• In general, the exponential length in n cannot be

avoided (p. 212).

• The size of the truth table is also O(n2n).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 206

Boolean Circuits

• A boolean circuit is a graph C whose nodes are the

gates.

• There are no cycles in C.

• All nodes have indegree (number of incoming edges)

equal to 0, 1, or 2.

• Each gate has a sort from

{true, false,∨,∧,¬, x1, x2, . . .}.
– There are n+ 5 sorts.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 207

Boolean Circuits (concluded)

• Gates with a sort from {true, false, x1, x2, . . .} are the

inputs of C and have an indegree of zero.

• The output gate(s) has no outgoing edges.

• A boolean circuit computes a boolean function.

• A boolean function can be realized by infinitely many

equivalent boolean circuits.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 208

Boolean Circuits and Expressions

• They are equivalent representations.

• One can construct one from the other:

¬ �
�

¬

�
�

�
�
 ∨ �

�

∨

�
�

�
�

�
�
 ∧ �

�

∧

�
�

�
�

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 209

An Example

((x1 x2) (x3 x4)) (x3 x4))

x1 x2 x3 x4

• Circuits are more economical because of the possibility

of sharing.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 210

circuit sat and circuit value

circuit sat: Given a circuit, is there a truth assignment

such that the circuit outputs true?

• circuit sat ∈ NP: Guess a truth assignment and then

evaluate the circuit.

circuit value: The same as circuit sat except that the

circuit has no variable gates.

• circuit value ∈ P: Evaluate the circuit from the input

gates gradually towards the output gate.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 211

Some Boolean Functions Need Exponential Circuitsa

Theorem 18 (Shannon (1949)) For any n ≥ 2, there is

an n-ary boolean function f such that no boolean circuits

with 2n/(2n) or fewer gates can compute it.

• There are 22
n

different n-ary boolean functions (p. 202).

• So it suffices to prove that the number of boolean

circuits with 2n/(2n) or fewer gates is less than 22
n

.

aCan be strengthened to “almost all boolean functions . . .”

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 212

The Proof (concluded)

• There are at most ((n+ 5)×m2)m boolean circuits with

m or fewer gates (see next page).

• But ((n+ 5)×m2)m < 22
n

when m = 2n/(2n):

m log2((n+ 5)×m2)

= 2n

(
1− log2

4n2

n+5

2n

)

< 2n

for n ≥ 2.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 213

m choices

n+5 choices

m choices

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 214

Claude Elwood Shannon (1916–2001)

Howard Gardner, “[Shannon’s mas-

ter’s thesis is] possibly the most im-

portant, and also the most famous,

master’s thesis of the century.”

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 215

Comments

• The lower bound 2n/(2n) is rather tight because an

upper bound is n2n (p. 204).

• The proof counted the number of circuits.

– Some circuits may not be valid at all.

– Different circuits may also compute the same

function.

• Both are fine because we only need an upper bound on

the number of circuits.

• We do not need to consider the outgoing edges because

they have been counted as incoming edges.a

aIf you prove it by considering outgoing edges, the bound will not be

good. (Try it!)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 216

Relations between Complexity Classes

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 217

It is, I own, not uncommon to be wrong in theory

and right in practice.

— Edmund Burke (1729–1797),

A Philosophical Enquiry into the Origin of Our

Ideas of the Sublime and Beautiful (1757)

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 218

Proper (Complexity) Functions

• We say that f : N → N is a proper (complexity)

function if the following hold:

– f is nondecreasing.

– There is a k-string TM Mf such that

Mf (x) =
f(|x |) for any x.a

– Mf halts after O(|x |+ f(|x |)) steps.
– Mf uses O(f(|x |)) space besides its input x.

• Mf ’s behavior depends only on |x | not x’s contents.
• Mf ’s running time is bounded by f(n).

aThe textbook calls “�” the quasi-blank symbol. The use of Mf (x)

will become clear in Proposition 19 (p. 222).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 219

Examples of Proper Functions

• Most “reasonable” functions are proper: c, �logn�,
polynomials of n, 2n,

√
n , n!, etc.

• If f and g are proper, then so are f + g, fg, and 2g.a

• Nonproper functions when serving as the time bounds

for complexity classes spoil “theory building.”

– For example, TIME(f(n)) = TIME(2f(n)) for some

recursive function f (the gap theorem).b

• Only proper functions f will be used in TIME(f(n)),

SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

aFor f(g), we need to add f(n) ≥ n.
bTrakhtenbrot (1964); Borodin (1972).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 220

Precise Turing Machines

• A TM M is precise if there are functions f and g such

that for every n ∈ N, for every x of length n, and for

every computation path of M ,

– M halts after precisely f(n) steps, and

– All of its strings are of length precisely g(n) at

halting.

∗ Recall that if M is a TM with input and output,

we exclude the first and last strings.

• M can be deterministic or nondeterministic.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 221

Precise TMs Are General

Proposition 19 Suppose a TMa M decides L within time

(space) f(n), where f is proper. Then there is a precise TM

M ′ which decides L in time O(n+ f(n)) (space O(f(n)),

respectively).

• M ′ on input x first simulates the TM Mf associated

with the proper function f on x.

• Mf ’s output, of length f(|x |), will serve as a

“yardstick” or an “alarm clock.”

aIt can be deterministic or nondeterministic.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 222

The Proof (continued)

• Then M ′ simulates M(x).

• M ′(x) halts when and only when the alarm clock runs

out—even if M halts earlier.

• If f is a time bound:

– The simulation of each step of M on x is matched by

advancing the cursor on the “clock” string.

– Because M ′ stops at the moment the “clock” string

is exhausted—even if M(x) stops earlier, it is precise.

– The time bound is therefore O(|x |+ f(|x |)).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 223

The Proof (concluded)

• If f is a space bound (sketch):

– M ′ simulates M on the quasi-blanks of Mf ’s output

string.

– The total space, not counting the input string, is

O(f(n)).

– But we still need a way to make sure there is no

infinite loop.a

aSee the proof of Theorem 26 on p. 240.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 224

Important Complexity Classes

• We write expressions like nk to denote the union of all

complexity classes, one for each value of k.

• For example,

NTIME(nk) =
⋃
j>0

NTIME(nj).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 225

Important Complexity Classes (concluded)

P = TIME(nk),

NP = NTIME(nk),

PSPACE = SPACE(nk),

NPSPACE = NSPACE(nk),

E = TIME(2kn),

EXP = TIME(2n
k

),

L = SPACE(logn),

NL = NSPACE(logn).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 226

Complements of Nondeterministic Classes

• Recall that the complement of L, or L̄, is the language

Σ∗ − L.

– sat complement is the set of unsatisfiable boolean

expressions.

• R, RE, and coRE are distinct (p. 170).

– Again, coRE contains the complements of languages

in RE, not languages that are not in RE.

• How about coC when C is a complexity class?

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 227

The Co-Classes

• For any complexity class C, coC denotes the class

{L : L̄ ∈ C}.

• Clearly, if C is a deterministic time or space complexity

class, then C = coC.
– They are said to be closed under complement.

– A deterministic TM deciding L can be converted to

one that decides L̄ within the same time or space

bound by reversing the “yes” and “no” states

(p. 167).

• Whether nondeterministic classes for time are closed

under complement is not known (p. 105).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 228

Comments

• As

coC = {L : L̄ ∈ C},
L ∈ C if and only if L̄ ∈ coC.

• But it is not true that L ∈ C if and only if L �∈ coC.
– coC is not defined as C̄.

• For example, suppose C = {{2, 4, 6, 8, 10, . . .}}.
• Then coC = {{1, 3, 5, 7, 9, . . .}}.
• But C̄ = 2{1,2,3,...}

∗ − {{2, 4, 6, 8, 10, . . .}}.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 229

The Quantified Halting Problem

• Let f(n) ≥ n be proper.

• Define

Hf = {M ;x : M accepts input x

after at most f(|x |) steps},
where M is deterministic.

• Assume the input is binary.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 230

Hf ∈ TIME(f(n)3)

• For each input M ;x, we simulate M on x with an alarm

clock of length f(|x |).
– Use the single-string simulator (p. 79), the universal

TM (p. 149), and the linear speedup theorem (p. 89).

– Our simulator accepts M ;x if and only if M accepts

x before the alarm clock runs out.

• From p. 86, the total running time is O(�Mk2Mf(n)2),

where �M is the length to encode each symbol or state of

M and kM is M ’s number of strings.

• As �Mk2M = O(n), the running time is O(f(n)3), where

the constant is independent of M .

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 231

Hf �∈ TIME(f(�n/2�))
• Suppose TM MHf

decides Hf in time f(�n/2�).
• Consider machine:

Df (M) {
if MHf

(M ;M) = “yes”

then “no”;

else “yes”;

}
• Df on input M runs in the same time as MHf

on input

M ;M , i.e., in time f(� 2n+1
2 �) = f(n), where n = |M |.a

aA student pointed out on October 6, 2004, that this estimation for-

gets to include the time to write down M ;M .

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 232

The Proof (concluded)

• First,

Df (Df) = “yes”

⇒ Df ;Df �∈ Hf

⇒ Df does not accept Df within time f(|Df |)
⇒ Df (Df) �= “yes”

a contradiction

• Similarly, Df (Df) = “no” ⇒ Df (Df) = “yes.”

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 233

The Time Hierarchy Theorem

Theorem 20 If f(n) ≥ n is proper, then

TIME(f(n)) � TIME(f(2n+ 1)3).

• The quantified halting problem makes it so.

Corollary 21 P � E.

• P ⊆ TIME(2n) because poly(n) ≤ 2n for n large enough.

• But by Theorem 20,

TIME(2n) � TIME((22n+1)3) ⊆ E.

• So P � E.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 234

The Space Hierarchy Theorem

Theorem 22 (Hennie and Stearns (1966)) If f(n) is

proper, then

SPACE(f(n)) � SPACE(f(n) log f(n)).

Corollary 23 L � PSPACE.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 235

Nondeterministic Time Hierarchy Theorems

Theorem 24 (Cook (1973)) NTIME(nr) � NTIME(ns)

whenever 1 ≤ r < s.

Theorem 25 (Seiferas, Fischer, and Meyer (1978)) If

T1(n), T2(n) are proper, then

NTIME(T1(n)) � NTIME(T2(n))

whenever T1(n+ 1) = o(T2(n)).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 236

The Reachability Method

• The computation of a time-bounded TM can be

represented by a directed graph.

• The TM’s configurations constitute the nodes.

• There is a directed edge from node x to node y if x

yields y in one step.

• The start node representing the initial configuration has

zero in degree.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 237

The Reachability Method (concluded)

• When the TM is nondeterministic, a node may have an

out degree greater than one.

– The graph is the same as the computation tree

earlier except that identical configurations are

merged into one node.

• So M accepts the input if and only if there is a path

from the start node to a node with a “yes” state.

• It is the reachability problem.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 238

Illustration of the Reachability Method

yes

yes
Initial

configuration

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 239

Relations between Complexity Classes

Theorem 26 Suppose f(n) is proper. Then

1. SPACE(f(n)) ⊆ NSPACE(f(n)),

TIME(f(n)) ⊆ NTIME(f(n)).

2. NTIME(f(n)) ⊆ SPACE(f(n)).

3. NSPACE(f(n)) ⊆ TIME(klogn+f(n)).

• Proof of 2:

– Explore the computation tree of the NTM for “yes.”

– Specifically, generate an f(n)-bit sequence denoting

the nondeterministic choices over f(n) steps.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 240

Proof of Theorem 26(2)

• (continued)

– Simulate the NTM based on the choices.

– Recycle the space and repeat the above steps.

– Halt with “yes” when a “yes” is encountered or “no”

if the tree is exhausted.

– Each path simulation consumes at most O(f(n))

space because it takes O(f(n)) time.

– The total space is O(f(n)) because space is recycled.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 241

Proof of Theorem 26(3)

• Let k-string NTM

M = (K,Σ,Δ, s)

with input and output decide L ∈ NSPACE(f(n)).

• Use the reachability method on the configuration graph

of M on input x of length n.

• A configuration is a (2k + 1)-tuple

(q, w1, u1, w2, u2, . . . , wk, uk).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 242

Proof of Theorem 26(3) (continued)

• We only care about

(q, i, w2, u2, . . . , wk−1, uk−1),

where i is an integer between 0 and n for the position of

the first cursor.

• The number of configurations is therefore at most

|K| × (n+ 1)× |Σ|2(k−2)f(n) = O(c
logn+f(n)
1) (1)

for some c1, which depends on M .

• Add edges to the configuration graph based on M ’s

transition function.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 243

Proof of Theorem 26(3) (concluded)

• x ∈ L ⇔ there is a path in the configuration graph from

the initial configuration to a configuration of the form

(“yes”, i, . . .).a

• This is reachability on a graph with O(c
logn+f(n)
1)

nodes.

• It is in TIME(clogn+f(n)) for some c because

reachability ∈ TIME(nj) for some j and[
c
logn+f(n)
1

]j
= (cj1)

logn+f(n).

aThere may be many of them.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 244

Space-Bounded Computation and Proper Functions

• In the definition of space-bounded computations earlier

(p. 104), the TMs are not required to halt at all.

• When the space is bounded by a proper function f ,

computations can be assumed to halt:

– Run the TM associated with f to produce a

quasi-blank output of length f(n) first.

– The space-bounded computation must repeat a

configuration if it runs for more than clogn+f(n) steps

for some c (p. 243).

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 245

Space-Bounded Computation and Proper Functions
(concluded)

• (continued)

– So an infinite loop occurs during simulation for a

computation path longer than clogn+f(n) steps.

– Hence we only simulate up to clogn+f(n) time steps

per computation path.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 246

A Grand Chain of Inclusionsa

• It is an easy application of Theorem 26 (p. 240) that

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

• By Corollary 23 (p. 235), we know L � PSPACE.

• So the chain must break somewhere between L and EXP.

• It is suspected that all four inclusions are proper.

• But there are no proofs yet.

aWith input from Mr. Chin-Luei Chang (R93922004, D95922007) on

October 22, 2004.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 247

What Is Wrong with the Proof?a

• By Theorem 26(2) (p. 240),

NL ⊆ TIME
(
kO(logn)

)
⊆ TIME (nc1)

for some c1 > 0.

• By Theorem 20 (p. 234),

TIME (nc1) � TIME (nc2) ⊆ P

for some c2 > c1.

• So

NL �= P.

aContributed by Mr. Yuan-Fu Shao (R02922083) on November 11,

2014.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 248

What Is Wrong with the Proof? (concluded)

• Recall from p. 225 that TIME(kO(logn)) is a shorthand

for ⋃
j>0

TIME
(
jO(logn)

)
.

• So the correct proof runs more like

NL ⊆
⋃
j>0

TIME
(
jO(logn)

)
⊆
⋃
c>0

TIME (nc) = P.

• And

NL �= P

no longer follows.

c©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 249

