Theory of Computation

Final Examination on January 13, 2015 Fall Semester, 2014

Problem 1 (20 points) Does **IP** contain all languages that have uniformly polynomial circuits?

Ans: Yes. **P** equals the class of languages with uniformly polynomial circuits. Furthermore, any language in **P** can be decided by an interactive proof system where the verifier simply decides the language itself and ignores the provers messages. So $\mathbf{P} \subseteq \mathbf{IP}$.

Problem 2 (30 points) Design a zero-knowledge proof protocol for 3 Colorability.

Ans: See pp. 695–696 of the slides.

Problem 3 (30 points) Suppose that there are n jobs to be assigned to m machines. Let t_i be the sorted running time for job $i \in \{1, \ldots, n\}$ in descending order, which means $t_1 > t_2 > \cdots > t_n$, A be an assignment where A[i] = j means that job i is assigned to machine $j \in \{1, \ldots, m\}$, and $T[j] = \sum_{A[i]=j} t_i$ be the total running time for machine j. The makespan of A is the maximum time that any machine is busy, or

$$makespan(A) = \max_{j} T[j].$$

The SORTED LOAD BALANCE problem is to find the assignment which has minimal makespan over all assignments A, denoted by OPT. It is known to be NP-hard. Consider the following algorithm for SORTED LOAD BALANCE:

1:
$$T[j] \leftarrow 0$$
 for $j = 1, 2, ..., m$

2: for $i \leftarrow 1$ to n do

3: Let min be the j such that T[j] is the smallest (with ties broken arbitrarily)

```
4: A[i] \leftarrow \min
```

```
5: T[\min] \leftarrow T[\min] + t_i
```

```
6: end for
```

7: return A

Show that this algorithm for SORTED LOAD BALANCE is an approximation algorithm which returns a solution that is at most $(3/2) \times OPT$. (You may use the fact that $T[j] - t_i \leq OPT$ for machine j and job i.)

Ans: Suppose $n \leq m$. Then the algorithm is trivially optimal and the claim holds. Now suppose n > m. Assume that the optimal algorithm assigns the first m jobs to distinct machines. Then job m + 1 must be paired with one of the first m jobs. Recall that each of the first m jobs has a running time at least t_m . So $t_m + t_{m+1} \leq OPT$, and therefore $2t_{m+1} < OPT$, which implies

$$t_{m+1} < OPT/2.$$

On the other hand, assume that two (say *i* and *j*, where i < j) of the first *m* jobs are assigned by the optimal algorithm to the same machine. Then $t_i + t_j \leq OPT$. It implies that $2t_j < OPT$, which further implies $t_{m+1} \leq OPT/2$ because $t_{m+1} < t_j$.

Let machine j^* be the busiest machine after running our greedy algorithm. This means $T[j^*]$ equals the makespan, i.e., the largest among all T[j]s. Let i^* be the last job assigned to machine j^* . Suppose $i^* \leq m$. Then machine j^* has only one job i^* because each job of the first m jobs is assigned to distinct machines. Since t_1 is the largest running time among the first m jobs, this implies that $i^* = 1$ and $T[j^*] = t_1$. Recall that $t_i \leq OPT$ for all i. So $T[j^*] = t_1 = OPT$ and the claim holds. Now suppose $i^* > m$. Then $t_{i^*} < t_{m+1} \leq OPT/2$. By the hint, $T[j^*] \leq OPT + t_{i^*} \leq (3/2) \times OPT$. Hence, the claim is proved.

Problem 4 (20 points) Argue that if all monotone languages in P have polynomial monotone circuits, then $P \neq NP$.

Ans: See p. 804 of the slides.