Zero-Knowledge Proof of 3 Colorability?
1: fori=1,2,...,|E|? do
Peggy chooses a random permutation 7 of the 3-coloring ¢;

Peggy samples encryption schemes randomly, commits® them,
and sends w(¢(1)), w(d(2)),...,m(d(|V])) encrypted to Victor;
Victor chooses at random an edge e € E and sends it to Peggy

for the coloring of the endpoints of e;
if e = (u,v) € FE then

Peggy reveals the colors m(¢(u)) and 7(¢(v)) and “proves”
that they correspond to their encryptions;

else
Peggy stops;

end if

2Goldreich, Micali, and Wigderson (1986).
PContributed by Mr. Ren-Shuo Liu (D98922016) on December 22,

2009.
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if the “proof” provided in Line 6 is not valid then

Victor rejects and stops;
end if

if 7(¢(u)) = m(@(v)) or w($(w)), m($(v)) & {1,2,3} then

Victor rejects and stops;
end if
: end for

: Victor accepts;
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Analysis

If the graph is 3-colorable and both Peggy and Victor

follow the protocol, then Victor always accepts.

Suppose the graph is not 3-colorable and Victor follows
the protocol.

Let e be an edge that is not colored legally.
Victor will pick it with probability 1/m, where m = | E'|.

Then however Peggy plays, Victor will accept with
probability <1 — (1/m) per round.
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Analysis (concluded)

So Victor will accept with probability at most

(1-m™ )™ <e ™.

Thus the protocol is valid.

This protocol yields no knowledge to Victor as all he

gets is a bunch of random pairs.

The proof that the protocol is zero-knowledge to any

verifier is intricate.
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Comments

e Fach w(¢(7)) is encrypted by a different cryptosystem in
Line 3.2

— Otherwise, all the colors will be revealed in Line 6.

e Each edge e must be picked randomly.P

— Otherwise, Peggy will know Victor’s game plan and
plot accordingly.

2Contributed by Ms. Yui-Huei Chang (R96922060) on May 22, 2008
PContributed by Mr. Chang-Rong Hung (R96922028) on May 22, 2008
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Approximability
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All science is dominated by

the idea of approximation.
— Bertrand Russell (1872-1970)
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Just because the problem is NP-complete
does not mean that

you should not try to solve it.
— Stephen Cook (2002)
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Tackling Intractable Problems

Many important problems are NP-complete or worse.
Heuristics have been developed to attack them.
They are approximation algorithms.

How good are the approximations?
— We are looking for theoretically guaranteed bounds,

not “empirical” bounds.

Are there NP problems that cannot be approximated
well (assuming NP # P)?

Are there NP problems that cannot be approximated at
all (assuming NP # P)?
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Some Definitions

e Given an optimization problem, each problem

instance x has a set of feasible solutions F(z).

e Each feasible solution s € F'(x) has a cost ¢(s) € Z™.

— Here, cost refers to the quality of the feasible
solution, not the time required to obtain it.

— It is our objective function, e.g., total distance,

number of satisfied expressions, or cut size.
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Some Definitions (concluded)

e The optimum cost is

OPT(x) = sénﬁ}&) c(s)

for a minimization problem.

e [t is

OoPT =
(2) nax c(s)

for a maximization problem.
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Approximation Algorithms

e Let (polynomial-time) algorithm M on x returns a
feasible solution.

e )M is an e-approximation algorithm, where € > 0, if
for all x,

c(M(z)) —opr(z)] _
max(OPT(x),c(M(x))) —
— For a minimization problem,
o(M(2)) — minyepg e(s) _
(M (x) =°

— For a maximization problem,

MaXse F(x) C(S) - C(M(ZE))

MaXscF(z) C(S)

<e
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Lower and Upper Bounds

e For a minimization problem,

MiNge gy C(S
Bin, 0 < (o) < TERLE

e For a maximization problem,

(1 —€) x max ¢(s) <ce(M(zx)) < max c(s).

seF (x) SEF (x)
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Range Bounds
e ¢ ranges between 0 (best) and 1 (worst).

e For minimization problems, an e-approximation

algorithm returns solutions within

OPT
1 — €

e,

e For maximization problems, an e-approximation

algorithm returns solutions within

[ (1 —€) X OPT,OPT].
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Approximation Thresholds

For each NP-complete optimization problem, we shall be
interested in determining the smallest € for which there

is a polynomial-time e-approximation algorithm.
But sometimes ¢ has no minimum value.

The approximation threshold is the greatest lower
bound of all € > 0 such that there is a polynomial-time

e-approximation algorithm.

By a standard theorem in real analysis, such a threshold

must exist.?

2Bauldry (2009).
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Approximation Thresholds (concluded)

e The approximation threshold of an optimization problem
can be anywhere between 0 (approximation to any
desired degree) and 1 (no approximation is possible).

e If P = NP, then all optimization problems in NP have
an approximation threshold of 0.

e So we assume P == NP for the rest of the discussion.
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Approximation Ratio

e c-approximation algorithms can also be defined via

approximation ratio:?

c(M(x))
OPT(x)

e For a minimization problem, the approximation ratio is

c(M(x)) < 1
mingep(yy c(s) ~ 1—e€

1< (19)

e For a maximization problem, the approximation ratio is
c(M(x))

< 1.
MaXse F(x) C<S)

1l —e<

#Williamson and Shmoys (2011).
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NODE COVER

NODE COVER seeks the smallest C' C V' in graph
G = (V, E) such that for each edge in F, at least one of

its endpoints is in C.

A heuristic to obtain a good node cover is to iteratively

move a node with the highest degree to the cover.

This turns out to produce an approximation ratio of?

c(M(x))
OPT(x)

= O(logn).

So it is not an e-approximation algorithm for any

constant € < 1 according to Eq. (19).

aChvétal (1979).
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A 0.5-Approximation Algorithm?

. C = (;

. while F # () do
Delete an arbitrary edge { u,v } from F;
Add u and v to C; {Add 2 nodes to C' each time.}
Delete edges incident with u or v from FE;

. end while

. return C';

2Johnson (1974).
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Analysis

It is easy to see that C' is a node cover.
C' contains |C'|/2 edges.?
No two edges of C share a node.”

Any node cover must contain at least one node from
each of these edges.

— If there is an edge in C' both of whose ends are

outside the cover, then that cover will not be a valid

cover.

The edges deleted in Line 3.
PIn fact, C as a set of edges is a mazimal matching.
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Analysis (concluded)

This means that opT(G) > |C|/2.

So the approximation ratio

el oy
opT(G) —

So we have a 0.5-approximation algorithm.

The approximation threshold is therefore < 0.5.
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The 0.5 Bound Is Tight for the Algorithm?

2Contributed by Mr. Jeng-Chung Li (R92922087) on December 20,
2003. Recall that Konig’s theorem says the size of a maximum matching
equals that of a minimum node cover in a bipartite graph.
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Remarks

e The approximation threshold is at least?®

1
1— (10\F - 21) ~ 0.2651.

e The approximation threshold is 0.5 if one assumes the

unique games conjecture.”

e This ratio 0.5 is also the lower bound for any “greedy”

algorithms.©

2Dinur and Safra (2002).

PKhot and Regev (2008).
°Davis and Impagliazzo (2004).
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Maximum Satisfiability

e Given a set of clauses, MAXSAT seeks the truth
assignment that satisfies the most.

o MAX2SAT is already NP-complete (p. 345), so MAXSAT is
NP-complete.

e Consider the more general k-MAXGSAT for constant k.
— Let @ = {¢1,P2,...,0m} be a set of boolean

expressions in n variables.
— Each ¢; is a general expression involving k variables.

— k-MAXGSAT seeks the truth assignment that satisfies
the most expressions.
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A Probabilistic Interpretation of an Algorithm

e FEach ¢, involves exactly k variables and is satisfied by s;
of the 2% truth assignments.

e A random truth assignment € {0, 1}" satisfies ¢; with
probability p(¢;) = s;/2".

— p(¢;) is easy to calculate as k is a constant.

e Hence a random truth assignment satisfies an average of

m

p(®) = > p(e)

1=1

expressions @;.
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The Search Procedure

Clearly

% {p(®|x1 = true]) + p(®|x1 = false]) }.

Select the t; € {true,false} such that p(®|x; =t1]) is

the larger one.
Note that p(®[x1 =t1]) > p(P).

Repeat the procedure with expression ®|x; = t; ] until
all variables x; have been given truth values ¢; and all ¢,

are either true or false.
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The Search Procedure (continued)

e By our hill-climbing procedure,

p(®)
p(®lz1 =11])
p(®|x1 =11, 20 =12])

p(Plz1 =t1, 20 =12,..., 2,

e So at least p(®) expressions are satisfied by truth

assignment (t1,to,...,%t,).
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The Search Procedure (concluded)

e Note that the algorithm is deterministic!

e [t is called the method of conditional

expectations.?

2Erdés and Selfridge (1973); Spencer (1987).
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Approximation Analysis

The optimum is at most the number of satisfiable
¢;—1i.e., those with p(¢;) > 0.

Hence the ratio of algorithm’s output vs. the optimum

152

R COND ST ()

B ZP(¢¢)>0 1
So this is a polynomial-time e-approximation algorithm
with € = 1 — min,4,)>0 (@)

Because p(¢;) > 27, the heuristic is a polynomial-time

e-approximation algorithm with e = 1 — 27%.

@Recall that - a; -b;) > min; a;/b;.
YA (2
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Back to MAXSAT

In MAXSAT, the ¢;’s are clauses (like x V y V —z).

Hence p(¢;) > 1/2, which happens when ¢; contains a
single literal.

And the heuristic becomes a polynomial-time

e-approximation algorithm with e = 1/2.2

— Suppose we set each boolean variable to true with
probability (v/5 — 1)/2, the golden ratio.

— Then follow through the method of conditional
expectations to derandomize it.

— We will obtain a [ (3 — v/5)]/2-approximation algorithm,
where [ (3 —1/5)]/2 ~ 0.382.°

2Johnson (1974).
PLieberherr and Specker (1981).
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Back to MAXSAT (concluded)

o If the clauses have k distinct literals,
p(p;) =1—27F,

e And the heuristic becomes a polynomial-time
e-approximation algorithm with e = 27F.

— This is the best possible for £ > 3 unless P = NP.
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MAX CUT Revisited

MAX CUT seeks to partition the nodes of graph
G = (V,FE) into (5,V — S) so that there are as many
edges as possible between S and V' — S.

It is NP-complete.?

Local search starts from a feasible solution and

performs “local” improvements until none are possible.

e Next we present a local-search algorithm for MAX CUT.

@Recall p. 375.
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A 0.5-Approximation Algorithm for MAX CUT
. S = @;
. while Jv € V whose switching sides results in a larger
cut do
Switch the side of v;
. end while

. return S;

e A 0.12-approximation algorithm exists.?

e 0.059-approximation algorithms do not exist unless

NP = ZPP.

2Goemans and Williamson (1995).
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Analysis

~_— Optimal cut
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Analysis (continued)

Partition V = V; U V5 U V3 U V,, where
— Our algorithm returns (V3 U Va, V3 U Vy).
— The optimum cut is (V3 U V3, Vo U Vy).

Let e;; be the number of edges between V; and V.

Our algorithm returns a cut of size
€13 T €14 T+ €23 + €24.
The optimum cut size is

€12 + €34 + €14 + €23.
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Analysis (continued)

e For each node v € V7, its edges to V7 U V5 are
outnumbered by those to V3 U Vj.

— Otherwise, v would have been moved to V3 U Vj to

improve the cut.

e Considering all nodes in V; together, we have

2e11 + e12 < e13 + e14.
— It is 2eq1 is because each edge in V; is counted twice.

e The above inequality implies

e12 < €13 + €14.

©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 731



Analysis (concluded)

e Similarly,

€23 + €24
< €23+ €13

< e14+ ey

e Add all four inequalities, divide both sides by 2, and add
the inequality e14 + ea3 < e14 + €23 + €13 + ea4 to obtain

e12 + €34 + e14 + €23 < 2(e13 + €14 + €23 + €94).

e The above says our solution is at least half the optimum.
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Approximability, Unapproximability, and Between

e KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have
approximation thresholds less than 1.

— KNAPSACK has a threshold of 0 (p. 736).

— But NODE COVER (p. 714) and MAXSAT have a
threshold larger than O.

e The situation is maximally pessimistic for TSP, which
cannot be approximated (p. 734).
— The approximation threshold of TSP is 1.
* The threshold is 1/3 if TSP satisfies the triangular
inequality.
— The same holds for INDEPENDENT SET (see the
textbook).
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Unapproximability of Tsp?

Theorem 78 The approximation threshold of TSP s 1
unless P = NP.

e Suppose there is a polynomial-time e-approximation
algorithm for TSP for some € < 1.

e We shall construct a polynomial-time algorithm to solve
the NP-complete HAMILTONIAN CYCLE.

e Given any graph G = (V, E), construct a TSP with | V|
cities with distances

if {i,jl e E

otherwise

2Sahni and Gonzales (1976).
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The Proof (concluded)

e Run the alleged approximation algorithm on this TSP.

e Suppose a tour of cost |V] is returned.

— This tour must be a Hamiltonian cycle.

14

e Suppose a tour that includes an edge of length {—_ is

returned.

4
1—e€-

— The total length of this tour is >

— Because the algorithm is e-approximate, the optimum
is at least 1 — € times the returned tour’s length.

— The optimum tour has a cost exceeding | V'|.

— Hence G has no Hamiltonian cycles.
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KNAPSACK Has an Approximation Threshold of Zero?

Theorem 79 For any €, there is a polynomial-time

e-approximation algorithm for KNAPSACK.

e We have n weights wy, wa,...,w, € ZT, a weight limit

W, and n values vy, vo,...,v, € ZT.P

e We must find an S C {1,2,...,n} such that
ZiES w; < W and ZZ-E 5 U; 1s the largest possible.

2Ibarra and Kim (1975).
PIf the values are fractional, the result is slightly messier, but the main

conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011,
R93922045) on December 29, 2004.
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The Proof (continued)

Let

V = max{vy,va,..., v, }.
Clearly, ) .cqvi <nV.
Let 0<7:1<nand 0 <ov<nV.

W (i,v) is the minimum weight attainable by selecting
only from the first ¢ items and with a total value of v.

— Itisan (n+1) x (nV + 1) table.

Set W (0,v) =00 forve {1,2,...,nV } and W(i,0) =0

fori=0,1,...,n.2

2Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu
(D98922013) on December 28, 2009.
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The Proof (continued)

e Then, for 0 <17 < n,
Wi+ 1,v) =min{W(i,v), W(,v — v41) + Wit1}

e Finally, pick the largest v such that W(n,v) < W.?

e The running time is O(n?V’), not polynomial time.

e Key idea: Limit the number of precision bits.

2Lawler (1979).
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The Proof (continued)

e Define

1 aob | Ui
=25
— This is equivalent to zeroing each v;’s last b bits.

e (Call the original instance
r = (wy,...,wy, W vy, ...

e (Call the approximate instance
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The Proof (continued)

e Solving z’ takes time O(n2V/2b).

— The algorithm only performs subtractions on the

v;-related values.

So the b last bits can be remowved from the

calculations.

That is, use v) = | 5| and V' = max(vf, vf,..., v}

in the calculations.
Then multiply the returned value by 2°.

It is an (n + 1) x (nV +1)/2° table.
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The Proof (continued)

The solution S’ is close to the optimum solution S:

Zviz ZU; 220222(2}@—2(’) ZZvi—nQb.

1eS’ 1eS’ eS8 eS8 1€S

Hence

Zvi Z Z‘Ui —n2b.

€S’ 1€8

Without loss of generality, assume w; < W for all 2.

— Otherwise, item ¢ is redundant.

V is a lower bound on OPT.

— Picking an item with value V' is a legitimate choice.
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The Proof (concluded)

The relative error from the optimum is:

Zz‘es Vi — ZiES’ Ui < ZZES Ui — Ziesf Uy n2°

< —.
Ziesvi V o V

Suppose we pick b = |log, <~ |.

The algorithm becomes e-approximate.®

The running time is then O(n?V/2°%) = O(n3/e¢), a
polynomial in n and 1/e.”

2See Eq. (17) on p. 706.

PIt hence depends on the value of 1/¢. Thanks to a lively class dis-
cussion on December 20, 2006. If we fix ¢ and let the problem size
increase, then the complexity is cubic. Contributed by Mr. Ren-Shan
Luoh (D97922014) on December 23, 2008.
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Comments

INDEPENDENT SET and NODE COVER are reducible to
each other (Corollary 41, p. 368).

NODE COVER has an approximation threshold at most
0.5 (p. 714).

But INDEPENDENT SET is unapproximable (see the
textbook).

INDEPENDENT SET limited to graphs with degree < k is
called k-DEGREE INDEPENDENT SET.

k-DEGREE INDEPENDENT SET is approximable (see the
textbook).
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