The Density Attack for PRIMES
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The Density Attack for PRIMES
. Pick k € {1,...,n} randomly;
. if k|n and k # 1 and k # n then
return “n is composite”;

. else

. return “n is (probably) a prime”;
: end lf
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The Density Attack for PRIMES (continued)

e It works, but does it work well?

e The ratio of numbers < n relatively prime to n (the

white ring) is

(n)

n

e When n = pqg, where p and ¢q are distinct primes,

—p—q+1 11
o(n) _pg—p—q+1l

n pq qg P
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The Density Attack for PRIMES (concluded)

e So the ratio of numbers < n not relatively prime to n
(the grey area) is < (1/q) + (1/p).
— The “density attack” has probability about 2/4/n of
factoring n = pg when p ~ ¢ = O(y/n).
— The “density attack” to factor n = pg hence takes
Q(y/n) steps on average when p ~ g = O(y/n).

— This running time is exponential: (20-5827),
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The Chinese Remainder Theorem

e Let n =nyns---ni, where n; are pairwise relatively

prime.

e For any integers ai,as,...,ax, the set of simultaneous

equations

a1 mod nq,

as mod no,

x ar, mod ng,

has a unique solution modulo n for the unknown =.
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Fermat's “Little” Theorem?

Lemma 56 For all0 < a < p, a?~! =1 mod p.

e Recall ®(p) ={1,2,...,p—1}.

e Consider a®(p) = {am mod p: m € ®(p)}.

— a®(p) C ®(p) as a remainder must be between 1 and
p— 1.

— Suppose am = am’ mod p for m > m’, where
m, m’ € ®(p).

— That means a(m —m’) = 0 mod p, and p divides a or

m — m/, which is impossible.

2Pierre de Fermat (1601-1665).
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The Proof (concluded)
Multiply all the numbers in ®(p) to yield (p — 1)!.
Multiply all the numbers in a®(p) to yield a?~1(p — 1)!.

As a®(p) = ®(p), we have

a’ (p—1)!=(p—1)! mod p.

Finally, a?~! = 1 mod p because p f(p — 1)!.
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The Fermat-Euler Theorem?
Corollary 57 For all a € ®(n), a®™ =1 mod n.

e The proof is similar to that of Lemma 56 (p. 473).
e Consider a®(n) = {am mod n : m € ®(n)}.
e ad(n) =&(n).
— a®(n) C &(n) as a remainder must be between 0 and
n — 1 and relatively prime to n.
— Suppose am = am’ mod n for m’ < m < n, where
m,m’ € ®(n).
— That means a(m —m’) = 0 mod n, and n divides a or
m — m/, which is impossible.

2Proof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on Novem-
ber 24, 2004.
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The Proof (concluded)?

e Multiply all the numbers in ®(n) to yield [[,,cq(,) m-

e Multiply all the numbers in a®(n) to yield
a(b(n) HmECI)(n) m.
e As a®(n) = ®(n),

H m = q®" H m | mod n.

meP(n) med(n)

e Finally, a®™ = 1 mod n because n [ [Lcam) m-

aSome typographical errors corrected by Mr. Jung-Ying Chen
(D95723006) on November 18, 2008.
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An Example

o As 12 =122 x3,

$(12) = 12 x (1-%) (1-%):4.

o In fact, ®(12) = {1,5,7,11}.

e For example,
5% = 625 = 1 mod 12.
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Exponents

e The exponent of m € ®(p) is the least k € Z™ such that
mF =1 mod p.

e Every residue s € ®(p) has an exponent.

— 1,s,5°%, 5%, ... eventually repeats itself modulo p, say

s = s7 mod p, which means s/~* = 1 mod p.

e If the exponent of m is k and m* = 1 mod p, then k|.

— Otherwise, { = gk + a for 0 < a < k, and

mt = ma+te = m? =1 mod p, a contradiction.

Lemma 58 Any nonzero polynomial of degree k has at most

k distinct roots modulo p.
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Exponents and Primitive Roots

From Fermat’s “little” theorem, all exponents divide
p— 1.
A primitive root of p is thus a number with exponent
p— 1.

Let R(k) denote the total number of residues in
d(p) ={1,2,...,p— 1} that have exponent k.

We already knew that R(k) =0 for k& f(p —1).
S0

as every number has an exponent.
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Size of R(k)

Any a € ®(p) of exponent k satisfies

z* = 1 mod p.

Hence there are at most k£ residues of exponent k, i.e.,
R(k) < k, by Lemma 58 (p. 478).

Let s be a residue of exponent k.

1,s,s%,...,s" 1 are distinct modulo p.

— Otherwise, s* = s/ mod p with i < j.
— Then s7* = 1 mod p with j — i < k, a contradiction.

As all these k distinct numbers satisfy ¥ = 1 mod p,

they comprise all the solutions of ¥ = 1 mod p.
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Size of R(k) (continued)
But do all of them have exponent k (i.e., R(k) = k)7
And if not (i.e., R(k) < k), how many of them do?
Pick s¢, where ¢ < k.
Suppose ¢ ¢ (k) with ged(l, k) =d > 1.
Then

()4 = (s*)*/1 = 1 mod p.

Therefore, s* has exponent at most k/d < k.
So s* has exponent k only if £ € ®(k).
We conclude that

R(k) < ¢(k).
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Size of R(k) (concluded)

Because all p — 1 residues have an exponent,
p—1= > Rk)< Y ¢k =p—1
k[(p—1) k[(p—1)

by Lemma 55 (p. 465).

Hence
¢(k) when k|(p—1)

0 otherwise

R(k)

In particular, R(p —1) = ¢(p— 1) > 0, and p has at least

one primitive root.

This proves one direction of Theorem 50 (p. 451).
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A Few Calculations
Let p = 13.
From p. 475, we know ¢(p — 1) = 4.
Hence R(12) = 4.

Indeed, there are 4 primitive roots of p.

As
Od(p—1)={1,5,7,11},

the primitive roots are

g, 9%, 9", 9",

where ¢ is any primitive root.
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The Other Direction of Theorem 50 (p. 451)

We show p is a prime if there is a number r such that
1. 7?7~ =1 mod p, and

2. r(P=1/4 £ 1 mod p for all prime divisors ¢ of p — 1.
Suppose p is not a prime.

We proceed to show that no primitive roots exist.
Suppose =1 = 1 mod p (note ged(r,p) = 1).

We will show that the 2nd condition must be violated.
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The Proof (continued)

So we proceed to show r(P~1/¢ = 1 mod p for some

prime divisor q of p — 1.

r??) = 1 mod p by the Fermat-Euler theorem (p. 475).
Because p is not a prime, ¢(p) < p — 1.

Let k be the smallest integer such that ¥ = 1 mod p.

With the 1st condition, it is easy to show that k| (p — 1)
(similar to p. 478).

Note that k| ¢(p) (p. 478).
As k< ¢p(p), k<p-—1.
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The Proof (concluded)
Let q be a prime divisor of (p —1)/k > 1.
Then k|(p —1)/q.

By the definition of k,

r(P=1)/4 = 1 mod p.

But this violates the 2nd condition.
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Function Problems

Decision problems are yes/no problems (SAT, TSP (D),
etc.).

Function problems require a solution (a satisfying

truth assignment, a best TSP tour, etc.).
Optimization problems are clearly function problems.

What is the relation between function and decision

problems?

Which one is harder?
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Function Problems Cannot Be Easier than Decision
Problems

e If we know how to generate a solution, we can solve the
corresponding decision problem.

— If you can find a satisfying truth assignment
efficiently, then SAT is in P.

— If you can find the best TSP tour efficiently, then TSP
(D) is in P.

e But decision problems can be as hard as the

corresponding function problems.

©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 488



FSAT

FSAT is this function problem:
— Let ¢(x1,22,...,2,) be a boolean expression.

— If ¢ is satisfiable, then return a satisfying truth

assignment.

— Otherwise, return “no.”

We next show that if SAT € P, then FSAT has a
polynomial-time algorithm.

SAT is a subroutine (black box) that returns “yes” or

“no” on the satisfiability of the input.
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An Algorithm for FSAT Using SAT

t := €; {Truth assignment.}
if ¢ € SAT then
for:=1,2,...,ndo
if ¢[x; = true] € SAT then
t:=tU{x; = true};
¢ = ¢|x; = true];
else
t:=tU{x; = false };
¢ = ¢|x; = false];
end if
end for

1:
2:
3:
4.
D:
6:
7
8:
9:

= =
= O

return {¢;
. else

return “no”’;
. end if
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Analysis

If SAT can be solved in polynomial time, so can FSAT.
— There are < n + 1 calls to the algorithm for sAT.?

— Boolean expressions shorter than ¢ are used in each
call to the algorithm for SAT.

Hence SAT and FSAT are equally hard (or easy).

Note that this reduction from FSAT to SAT is not a Karp
reduction (recall p. 265).

Instead, it calls SAT multiple times as a subroutine and
moves on SAT’s outputs.

2Contributed by Ms. Eva Ou (R93922132) on November 24, 2004.
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TSP and TSP (D) Revisited

We are given n cities 1,2, ...,n and integer distances

d;; = dj; between any two cities ¢ and j.

TSP (D) asks if there is a tour with a total distance at

most B.

TSP asks for a tour with the shortest total distance.

— The shortest total distance is at most » ; . ;.

+ Recall that the input string contains dq1, ..., dy,.-
+ Thus the shortest total distance is less than 2!*! in

magnitude, where x is the input (why?).

We next show that if TSP (D) € P, then TSP has a

polynomial-time algorithm.
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An Algorithm for TSP Using TSP (D)

. Perform a binary search over interval [0,2/*!] by calling

TSP (D) to obtain the shortest distance, C;

: fori,7=1,2,...,ndo
Call Tsp (D) with B = C and d;; = C' 4 1;
if “no” then

Restore d;; to old value; {Edge |4, 7] is critical. }

end if

. end for

: return the tour with edges whose d;; < C;
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Analysis

An edge that is not on any optimal tour will be
eliminated, with its d;; set to C' + 1.

In fact, an edge which is not on all remaining optimal

tours will also be eliminated.

So the algorithm ends with n edges which are not
eliminated (why?).

e This is true even if there are multiple optimal tours!?

*Thanks to a lively class discussion on November 12, 2013.
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Analysis (concluded)

There are O(| 2| +n?) calls to the algorithm for TSP (D).
Each call has an input length of O(| z |).

So if TSP (D) can be solved in polynomial time, so can
TSP.

Hence TSP (D) and TSP are equally hard (or easy).
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Randomized Computation
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I know that half my advertising works,
I just don’t know which half.
— John Wanamaker

I know that half my advertising is
a waste of money,

I just don’t know which half!

— McGraw-Hill ad.
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Randomized Algorithms?®
Randomized algorithms flip unbiased coins.

There are important problems for which there are no
known efficient deterministic algorithms but for which

very efficient randomized algorithms exist.

— Extraction of square roots, for instance.

There are problems where randomization is necessary.

— Secure protocols.

Randomized version can be more efficient.

— Parallel algorithm for maximal independent set.”

2Rabin (1976); Solovay and Strassen (1977).
b“Maximal” (a local maximum) not “maximum” (a global maximum).
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“Four Most Important Randomized Algorithms™?

1. Primality testing.®
2. Graph connectivity using random walks.¢
3. Polynomial identity testing.<

4. Algorithms for approximate counting.®

2Trevisan (2006).
PRabin (1976); Solovay and Strassen (1977).
¢Aleliunas, Karp, Lipton, Lovasz, and Rackoff (1979).

dSchwartz (1980); Zippel (1979).
®Sinclair and Jerrum (1989).
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Bipartite Perfect Matching
e We are given a bipartite graph G = (U,V, E).
— U ={ui,ug,...,un}.
— V =Av,va,..., 0, }.
— EFECUXYV.
e We are asked if there is a perfect matching.

— A permutation 7 of {1,2,...,n} such that

(ui,vr()) € B

for all i € {1,2,...,n}.

e A perfect matching contains n edges.
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A Perfect Matching in a Bipartite Graph
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Symbolic Determinants
e We are given a bipartite graph G.
e Construct the n x n matrix A“ whose (i, j)th entry A%

is a symbolic variable x;; if (u;,v;) € E and 0 otherwise:

Zij, if (ui,vj) c Lk,

G _

0, othersie.
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Symbolic Determinants (continued)

e The matrix for the bipartite graph G on p. 501 is?

0 0 x13 14 0
0 xo2 O 0

r31 0 0 0

x41 0 244 O

51 O O XI55

The idea is similar to the Tanner graph in coding theory by Tanner

(1981).
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Symbolic Determinants (concluded)

e The determinant of A€ is

det(A®) = Z sgn(m H AC (i) (8)

T
— 7 ranges over all permutations of n elements.

— sgn(m) is 1 if 7 is the product of an even number of
transpositions and —1 otherwise.

— Equivalently, sgn(7) = 1 if the number of (4, j)s such
that ¢ < j and 7(i) > 7w(j) is even.?

o det(A%) contains n! terms, many of which may be 0s.

2Contributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.
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Determinant and Bipartite Perfect Matching

o In segn(m) [, A% .., note the following:
71' 1=1“"i,7(2)

— Each summand corresponds to a possible perfect

matching .

— All of the nonzero summands [];_, Afﬂ ;) are

distinct monomials and will not cancel.

o det(A%) is essentially an exhaustive enumeration.

Proposition 59 (Edmonds (1967)) G has a perfect
matching if and only if det(A%) is not identically zero.
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Perfect Matching and Determinant (p. 501)
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Perfect Matching and Determinant (concluded)

e The matrix is (p. 503)

0 13 T14

0 0 0

31 0 0 X35

T41 43 44 0

51 0 0 0 L55

G\ __
® det(A ) = —T14%22X35T43T51 + T13L22L35L44T51 +

L14X22X31X43TL55 — L13X22X31L44X55.

e Each nonzero term denotes a perfect matching, and vice

versa.
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How To Test If a Polynomial Is ldentically Zero?

2 variables.

det(A%) is a polynomial in n
There are exponentially many terms in det(A%).

Expanding the determinant polynomial is not feasible.

— Too many terms.

If det(A“) = 0, then it remains zero if we substitute

arbitrary integers for the variables x11,...,Zun.

When det(A%) # 0, what is the likelihood of obtaining a

zero’?
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Number of Roots of a Polynomial

Lemma 60 (Schwartz (1980)) Let p(z1,z2,...,2m) Z0
be a polynomial in m variables each of degree at most d. Let
M € Z*. Then the number of m-tuples

(x1,T2,...,xm) €{0,1,...., M —1}"™
such that p(r1, T2, ..., Tm) =0 is
< mdM™ 1,

e By induction on m (consult the textbook).
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Density Attack

The density of roots in the domain is at most

mdM™ 1 md

Mm™ M
So suppose p(x1,x2,...,Ty) Z 0.
Then a random
(x1,22,...,2m) €{0,1,... . M —1}"
has a probability of < md/M of being a root of p.

Note that M is under our control!

— One can raise M to lower the error probability, e.g.
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Density Attack (concluded)

Here is a sampling algorithm to test if p(x1,x2,..., %) Z 0.
. Choose i1, ...,4,, from {0,1,..., M — 1} randomly;
. if p(il,ig, c o ,Zm) 7é 0 then

return “p is not identically zero”;

return “p is (probably) identically zero”;
. end if

1
2
3
4: else
5
6
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Analysis

o If p(x1,22,...,2y) =0, the algorithm will always be

correct as p(i1,42,...,%m) = 0.

e Suppose p(x1,T2,...,Tm) Z 0.
— The algorithm will answer incorrectly with

probability at most md/M by Eq. (9) on p. 510.

e We next return to the original problem of bipartite

perfect matching.
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A Randomized Bipartite Perfect Matching Algorithm?
. Choose n? integers i1, ... 0, from {0,1,...,2n* — 1}
randomly; {So M = 2n?.}
. Calculate det(A%(i11,...,4nn)) by Gaussian elimination;
. if det(A% (i11,...,9pn)) # 0 then

return “G has a perfect matching”;
. else
return “G has no perfect matchings”;

. end if

2Lovéasz (1979). According to Paul Erdés, Lovasz wrote his first sig-

nificant paper “at the ripe old age of 17.”
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Analysis

If G has no perfect matchings, the algorithm will always
be correct as det(A%(i11,...,inn)) = 0.

Suppose G has a perfect matching.

— The algorithm will answer incorrectly with
probability at most md/M = 0.5 with m =n?, d=1
and M = 2n° in Eq. (9) on p. 510.

Run the algorithm independently k times.

Output “G has no perfect matchings” if and only if all
say “no perfect matchings.”

The error probability is now reduced to at most 27,
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LészI6 Lovasz (1948-)

©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 515



Remarks®

e Note that we are calculating

prob| algorithm answers “no” | G has no perfect matchings |,

prob| algorithm answers “yes” | G has a perfect matching].

e We are not calculating®

prob|[ G has no perfect matchings | algorithm answers “no” |,

prob|[ G has a perfect matching | algorithm answers “yes” |.

@Thanks to a lively class discussion on May 1, 2008.
b Numerical Recipes in C (1988), “[As] we already remarked, statistics

is not a branch of mathematics!”
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But How Large Can det(A%(iq1,...,9m,)) Be?

It is at most
n! (2n2)n .

Stirling’s formula says n! ~ v/27wn (n/e)".
Hence

log, det(AC (i11, . . ., inn)) = O(nlog, n)
bits are sufficient for representing the determinant.

We skip the details about how to make sure that all

intermediate results are of polynomial sizes.
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An Intriguing Question?

e Is there an (i11,...,%n,) that will always give correct
answers for the algorithm on p. 5137

e A theorem on p. 612 shows that such an (i11,...,%n)
exists!
— Whether it can be found efficiently is another matter.

e Once (i11,...,iny) is available, the algorithm can be

made deterministic.

#Thanks to a lively class discussion on November 24, 2004.
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