
A P-Complete Problem

Theorem 32 (Ladner (1975)) circuit value is

P-complete.

• It is easy to see that circuit value ∈ P.

• For any L ∈ P, we will construct a reduction R from L

to circuit value.

• Given any input x, R(x) is a variable-free circuit such

that x ∈ L if and only if R(x) evaluates to true.

• Let M decide L in time nk.

• Let T be the computation table of M on x.
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The Proof (continued)

• When i = 0, or j = 0, or j = |x |k − 1, then the value of

Tij is known.

– The jth symbol of x or
⊔
, a �, and a

⊔
, respectively.

– Recall that three out of T ’s 4 borders are known.
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The Proof (continued)

• Consider other entries Tij .

• Tij depends on only Ti−1,j−1, Ti−1,j , and Ti−1,j+1:
a

Ti−1,j−1 Ti−1,j Ti−1,j+1

Tij

• Let Γ denote the set of all symbols that can appear on

the table: Γ = Σ ∪ {σq : σ ∈ Σ, q ∈ K}.

• Encode each symbol of Γ as an m-bit number, whereb

m = ⌈log2 |Γ |⌉.

aThe dependency is “local.”
bCalled state assignment in circuit design.
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The Proof (continued)

• Let the m-bit binary string Sij1Sij2 · · ·Sijm encode Tij .

• We may treat them interchangeably without ambiguity.

• The computation table is now a table of binary entries

Sijℓ, where

0 ≤ i ≤ nk − 1,

0 ≤ j ≤ nk − 1,

1 ≤ ℓ ≤ m.
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The Proof (continued)

• Each bit Sijℓ depends on only 3m other bits:

Ti−1,j−1: Si−1,j−1,1 Si−1,j−1,2 · · · Si−1,j−1,m

Ti−1,j : Si−1,j,1 Si−1,j,2 · · · Si−1,j,m

Ti−1,j+1: Si−1,j+1,1 Si−1,j+1,2 · · · Si−1,j+1,m

• So truth values for the 3m bits determine Sijℓ.
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The Proof (continued)

• This means there is a boolean function Fℓ with 3m

inputs such that

Sijℓ

= Fℓ(

Ti−1,j−1︷ ︸︸ ︷
Si−1,j−1,1, Si−1,j−1,2, . . . , Si−1,j−1,m,

Ti−1,j︷ ︸︸ ︷
Si−1,j,1, Si−1,j,2, . . . , Si−1,j,m,

Ti−1,j+1︷ ︸︸ ︷
Si−1,j+1,1, Si−1,j+1,2, . . . , Si−1,j+1,m),

where for all i, j > 0 and 1 ≤ ℓ ≤ m.
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The Proof (continued)

• These Fℓ’s depend only on M ’s specification, not on x, i,

or j.

• Their sizes are constant.

• These boolean functions can be turned into boolean

circuits (see p. 208).

• Compose these m circuits in parallel to obtain circuit C

with 3m-bit inputs and m-bit outputs.

– Schematically, C(Ti−1,j−1, Ti−1,j , Ti−1,j+1) = Tij .
a

aC is like an ASIC (application-specific IC) chip.
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Circuit C
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The Proof (concluded)

• A copy of circuit C is placed at each entry of the table.

– Exceptions are the top row and the two extreme

column borders.

• R(x) consists of (|x |k − 1)(|x |k − 2) copies of circuit C.

• Without loss of generality, assume the output

“yes”/“no” appear at position (|x |k − 1, 1).

• Encode “yes” as 1 and “no” as 0.
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The Computation Tableau and R(x)

#��D��E��F��G��H��I���
#
#

�
�

& & & & & &

& & & & & &

& & & & & &
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A Corollary

The construction in the above proof yields the following,

more general result.

Corollary 33 If L ∈ TIME(T (n)), then a circuit with

O(T 2(n)) gates can decide if x ∈ L for |x | = n.
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monotone circuit value

• A monotone boolean circuit’s output cannot change

from true to false when one input changes from false to

true.

• Monotone boolean circuits are hence less expressive than

general circuits.

– They can compute only monotone boolean functions.

• Monotone circuits do not contain ¬ gates (prove it).

• monotone circuit value is circuit value applied

to monotone circuits.
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monotone circuit value Is P-Complete

Despite their limitations, monotone circuit value is as

hard as circuit value.

Corollary 34 monotone circuit value is P-complete.

• Given any general circuit, “move the ¬’s downwards”
using de Morgan’s lawsa to yield a monotone circuit

with the same output.

aHow? Need to make sure no exponential blowup.
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Cook’s Theorem: the First NP-Complete Problem

Theorem 35 (Cook (1971)) sat is NP-complete.

• sat ∈ NP (p. 119).

• circuit sat reduces to sat (p. 279).

• Now we only need to show that all languages in NP can

be reduced to circuit sat.a

aAs a bonus, this also shows circuit sat is NP-complete.
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The Proof (continued)

• Let single-string NTM M decide L ∈ NP in time nk.

• Assume M has exactly two nondeterministic choices at

each step: choices 0 and 1.

• For each input x, we construct circuit R(x) such that

x ∈ L if and only if R(x) is satisfiable.

• Equivalently, for each input x, M(x) = “yes” for some

computation path if and only if R(x) is satisfiable.

• How to come up with a polynomial-sized R(x) when

there are exponentially many computation paths?
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The Proof (continued)

• A straightforward proof is to construct a variable-free

circuit Ri(x) for the ith computation path.a

• Then add a small circuit to output 1 if and only if there

is an Ri(x) that outputs a “yes.”

• Clearly, the resulting circuit outputs 1 if and only if M

accepts x.

• But, it is too large because there are exponentially many

computation paths.

aThe circuit for Theorem 32 (p. 300) will do.
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The Proof (continued)

• A sequence of nondeterministic choices is a bit string

B = (c1, c2, . . . , c| x |k−1) ∈ {0, 1}|x |k−1.

• Once B is given, the computation is deterministic.

• Each choice of B results in a deterministic

polynomial-time computation.

• Each circuit C at time i has an extra binary input c

corresponding to the nondeterministic choice:

C(Ti−1,j−1, Ti−1,j , Ti−1,j+1, c) = Tij .
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The Computation Tableau for NTMs and R(x)

#��D��E��F��G��H��I���
#
#

�
�

& & & & & &

& & & & & &

& & & & & &

F��F��F�
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The Proof (concluded)

• Note that c1, c2, . . . , c|x |k−1 constitute the variables of

R(x).

• The overall circuit R(x) (on p. 318) is satisfiable if and

only if there is a truth assignment B such that the

computation table accepts.

• This happens if and only if M accepts x, i.e., x ∈ L.
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Stephen Arthur Cooka (1939–)

Richard Karp, “It is to our

everlasting shame that we

were unable to persuade

the math department [of

UC-Berkeley] to give him

tenure.”

aTuring Award (1982). See http://conservancy.umn.edu/handle/107226

for an interview in 2002.
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NP-Complete Problems
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Wir müssen wissen, wir werden wissen.

(We must know, we shall know.)

— David Hilbert (1900)

I predict that scientists will one day adopt a new

principle: “NP-complete problems are hard.”

That is, solving those problems efficiently is

impossible on any device that could be built

in the real world, whatever the final laws

of physics turn out to be.

— Scott Aaronson (2008)
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Two Notions

• Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings.

• R is called polynomially decidable if

{x; y : (x, y) ∈ R}

is in P.

• R is said to be polynomially balanced if (x, y) ∈ R

implies |y| ≤ |x |k for some k ≥ 1.
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An Alternative Characterization of NP

Proposition 36 (Edmonds (1965)) Let L ⊆ Σ∗ be a

language. Then L ∈ NP if and only if there is a polynomially

decidable and polynomially balanced relation R such that

L = {x : ∃y (x, y) ∈ R}.

• Suppose such an R exists.

• L can be decided by this NTM:

– On input x, the NTM guesses a y of length ≤ |x |k.
– It then tests if (x, y) ∈ R in polynomial time.

– It returns “yes” if the test is positive.
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The Proof (concluded)

• Now suppose L ∈ NP.

• NTM N decides L in time |x |k.

• Define R as follows: (x, y) ∈ R if and only if y is the

encoding of an accepting computation of N on input x.

• R is polynomially balanced as N is polynomially

bounded.

• R is polynomially decidable because it can be efficiently

verified by consulting N ’s transition function.

• Finally L = {x : (x, y) ∈ R for some y} because N

decides L.
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Jack Edmonds (1934–)
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Comments

• Any “yes” instance x of an NP problem has at least one

succinct certificate or polynomial witness y.

• “No” instances have none.

• Certificates are short and easy to verify.

– An alleged satisfying truth assignment for sat, an

alleged Hamiltonian path for hamiltonian path,

etc.

• Certificates may be hard to generate,a but verification

must be easy.

• NP is the class of easy-to-verify (i.e., in P) problems.

aUnless P equals NP.
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Levin Reduction

• The reduction R in Cook’s theorem (p. 313) is such that

– Each satisfying truth assignment for circuit R(x)

corresponds to an accepting computation path for

M(x).

• It actually yields an efficient way to transform a

certificate for x to a satisfying assignment for R(x), and

vice versa.

• A reduction with this property is called a Levin

reduction.a

aLevin is the co-inventor of NP-completeness, in 1973.
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Leonid Levin (1948–)

Leonid Levin (1998), “Mathemati-

cians often think that historical evi-

dence is that NP is exponential. His-

torical evidence is quite strongly in

the other direction.”
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You Have an NP-Complete Problem (for Your Thesis)

• From Propositions 28 (p. 290) and Proposition 31

(p. 293), it is the least likely to be in P.

• Your options are:

– Approximations.

– Special cases.

– Average performance.

– Randomized algorithms.

– Exponential-time algorithms that work well in

practice.

– “Heuristics” (and pray that it works for your thesis).
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I thought NP-completeness was an interesting idea:

I didn’t quite realize its potential impact.

— Stephen Cook (1998)

I was indeed surprised by Karp’s work

since I did not expect so many

wonderful problems were NP-complete.

— Leonid Levin (1998)
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Use of Reduction in Proving NP-Completeness

• Recall that L1 reduces to L2 if there is an efficient

function R such that for all inputs x (p. 265),

x ∈ L1 if and only if R(x) ∈ L2.

• When L1 is known to be NP-complete and when

L2 ∈ NP, then L2 is NP-complete.a

• A common mistake is to focus on solving x ∈ L1 or

solving R(x) ∈ L2.

• The correct way is to, given a certificate for x ∈ L1 (a

satisfying truth assignment, e.g.), construct a certificate

for R(x) ∈ L2 (a Hamiltonian path, e.g.), and vice versa.

aBecause NP is closed under reductions (p. 289).
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3sat

• k-sat, where k ∈ Z+, is the special case of sat.

• The formula is in CNF and all clauses have exactly k

literals (repetition of literals is allowed).

• For example,

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x1 ∨ ¬x2) ∧ (x1 ∨ ¬x2 ∨ ¬x3).
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3sat Is NP-Complete

• Recall Cook’s Theorem (p. 313) and the reduction of

circuit sat to sat (p. 279).

• The resulting CNF has at most 3 literals for each clause.

– This accidentally shows that 3sat where each clause

has at most 3 literals is NP-complete.

• Finally, duplicate one literal once or twice to make it a

3sat formula.

– So

x1 ∨ x2 becomes x1 ∨ x2 ∨ x2.
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The Satisfiability of Random 3sat Expressions

• Consider a random 3sat expressions ϕ with n variables

and cn clauses.

• Each clause is chosen independently and uniformly from

the set of all possible clauses.

• Intuitively, the larger the c, the less likely ϕ is satisfiable

as more constraints are added.

• Indeed, there is a cn such that for c < cn(1− ϵ), ϕ is

satisfiable almost surely, and for c > cn(1 + ϵ), ϕ is

unsatisfiable almost surely.a

aFriedgut and Bourgain (1999). As of 2006, 3.52 < cn < 4.596.
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Another Variant of 3sat

Proposition 37 3sat is NP-complete for expressions in

which each variable is restricted to appear at most three

times, and each literal at most twice. (3sat here requires

only that each clause has at most 3 literals.)
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The Proof (continued)

• Consider a general 3sat expression in which x appears k

times.

• Replace the first occurrence of x by x1, the second by

x2, and so on.

– x1, x2, . . . , xk are k new variables.
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The Proof (concluded)

• Add (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ · · · ∧ (¬xk ∨ x1) to the

expression.

– It is logically equivalent to

x1 ⇒ x2 ⇒ · · · ⇒ xk ⇒ x1.

– So x1, x2, . . . , xk must assume an identical truth

value for the whole expression to be satisfied.

• Note that each clause ¬xi ∨ xj above has only 2 literals.

• The resulting equivalent expression satisfies the

conditions for x.
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An Example

• Suppose we are given the following 3sat expression

· · · (¬x ∨ w ∨ g) ∧ · · · ∧ (x ∨ y ∨ z) · · · .

• The transformed expression is

· · · (¬x1∨w∨g)∧· · ·∧(x2∨y∨z) · · · (¬x1∨x2)∧(¬x2∨x1).

– Variable x1 appears 3 times.

– Literal x1 appears once.

– Literal ¬x1 appears 2 times.
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2sat Is in NL ⊆ P

• Let ϕ be an instance of 2sat: Each clause has 2 literals.

• NL is a subset of P (p. 246).

• By Eq. (3) on p. 257, coNL equals NL.

• We need to show only that recognizing unsatisfiable

2sat expressions is in NL.

• See the textbook for the complete proof.
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Generalized 2sat: max2sat

• Consider a 2sat expression.

• Let K ∈ N.

• max2sat asks whether there is a truth assignment that

satisfies at least K of the clauses.

– max2sat becomes 2sat when K equals the number

of clauses.
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Generalized 2sat: max2sat (concluded)

• max2sat is an optimization problem.

– With binary search, one can nail the maximum

number of satisfiable clauses of the 2sat expression.

• max2sat ∈ NP: Guess a truth assignment and verify

the count.

• We now reduce 3sat ϕ to max2sat.
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max2sat Is NP-Completea

• Consider the following 10 clauses:

(x) ∧ (y) ∧ (z) ∧ (w)

(¬x ∨ ¬y) ∧ (¬y ∨ ¬z) ∧ (¬z ∨ ¬x)
(x ∨ ¬w) ∧ (y ∨ ¬w) ∧ (z ∨ ¬w)

• Let the 2sat formula r(x, y, z, w) represent the

conjunction of these clauses.

• The clauses are symmetric with respect to x, y, and z.

• How many clauses can we satisfy?

aGarey, Johnson, and Stockmeyer (1976).
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The Proof (continued)

All of x, y, z are true: By setting w to true, we satisfy

4 + 0 + 3 = 7 clauses, whereas by setting w to false, we

satisfy only 3 + 0 + 3 = 6 clauses.

Two of x, y, z are true: By setting w to true, we satisfy

3 + 2 + 2 = 7 clauses, whereas by setting w to false, we

satisfy 2 + 2 + 3 = 7 clauses.
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The Proof (continued)

One of x, y, z is true: By setting w to false, we satisfy

1 + 3 + 3 = 7 clauses, whereas by setting w to true, we

satisfy only 2 + 3 + 1 = 6 clauses.

None of x, y, z is true: By setting w to false, we satisfy

0 + 3 + 3 = 6 clauses, whereas by setting w to true, we

satisfy only 1 + 3 + 0 = 4 clauses.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 345



The Proof (continued)

• A truth assignment that satisfies x ∨ y ∨ z can be

extended to satisfy 7 of the 10 clauses of r(x, y, z, w),

and no more.

• A truth assignment that does not satisfy x ∨ y ∨ z can

be extended to satisfy only 6 of them, and no more.

• The reduction from 3sat ϕ to max2sat R(ϕ):

– For each clause Ci = (α ∨ β ∨ γ) of ϕ, add group

r(α, β, γ, wi) to R(ϕ).

• If ϕ has m clauses, then R(ϕ) has 10m clauses.

• Finally, set K = 7m.
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The Proof (continued)

• We now show that K clauses of R(ϕ) can be satisfied if

and only if ϕ is satisfiable.

• Suppose K = 7m clauses of R(ϕ) can be satisfied.

– 7 clauses of each group r(α, β, γ, wi) must be satisfied

because each group can have at most 7 clauses

satisfied.a

– Hence each clause Ci = (α∨ β ∨ γ) of ϕ is satisfied by

the same truth assignment.

– So ϕ is satisfied.

aIf 70% of the world population are male and if at most 70% of each

country’s population are male, then each country must have exactly 70%

male population.
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The Proof (concluded)

• Suppose ϕ is satisfiable.

– Let T satisfy all clauses of ϕ.

– Each group r(α, β, γ, wi) can set its wi appropriately

to have 7 clauses satisfied.

– So K = 7m clauses are satisfied.
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Michael R. Garey (1945–)

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 349



David S. Johnson (1945–)
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Larry Stockmeyer (1948–2004)
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naesat

• The naesat (for “not-all-equal” sat) is like 3sat.

• But there must be a satisfying truth assignment under

which no clauses have all three literals equal in truth

value.

• Equivalently, there is a truth assignment such that each

clause has a literal assigned true and a literal assigned

false.
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naesat Is NP-Completea

• Recall the reduction of circuit sat to sat on p. 279ff.

• It produced a CNF ϕ in which each clause has 1, 2, or 3

literals.

• Add the same variable z to all clauses with fewer than 3

literals to make it a 3sat formula.

• Goal: The new formula ϕ(z) is nae-satisfiable if and

only if the original circuit is satisfiable.

aKarp (1972).

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 353



The Proof (continued)

• Suppose T nae-satisfies ϕ(z).

– T̄ takes the opposite truth value of T on every

variable.

– T̄ also nae-satisfies ϕ(z).

– Under T or T̄ , variable z takes the value false.

– This truth assignment T must satisfy all the clauses

of ϕ.

∗ Because z is not the reason that makes ϕ(z) true

under T .

– So T |= ϕ.

– So the original circuit is satisfiable.
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The Proof (concluded)

• Suppose there is a truth assignment that satisfies the

circuit.

– Then there is a truth assignment T that satisfies

every clause of ϕ.

– Extend T by adding T (z) = false to obtain T ′.

– T ′ satisfies ϕ(z).

– So in no clauses are all three literals false under T ′.

– In no clauses are all three literals true under T ′.

∗ Need to review the detailed construction on p. 280

and p. 281.
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Richard Karpa (1935–)

aTuring Award (1985).
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