Theory of Computation

homework 1 Due: 9/30/2014

Problem 1 Why can't the input of a Turing Machine contain ∐s?

Ans: Otherwise, one will not know where the input ends.

Problem 2 The TM on p. 28 of the slides halts with a "yes" if and only if the input string contains two consecutive 1's. That program assumes the input alphabet $\Sigma = \{0, 1, \bigsqcup, \triangleright\}$. Now, write a TM program for the same problem when $\Sigma = \{0, 1, 2, \bigsqcup, \triangleright\}$.

Ans: Assume $M = (K, \Sigma, \delta, s)$, where $K = (s, s_1, h), \Sigma = \{0, 1, 2, \bigsqcup, \triangleright\}$. Then

$p \in K$	$\sigma \in \Sigma$	$\delta(p,\sigma)$
s	\triangleright	$(s, \triangleright, \rightarrow)$
s	0	$(s,0,\rightarrow)$
s	1	$(s_1,1,\rightarrow)$
s	2	$(s,2,\rightarrow)$
s_1	0	$(s,0,\rightarrow)$
s_1	1	$(s_1, 1, -)$
s_1	2	$(s,2,\rightarrow)$
s	Ш	$(h,\sqcup,-)$
s_1	Ш	$(h,\sqcup,-)$