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Problem 1 (25 points). Show that NP = coNP if there exists an NP-

complete language that belongs in co-NP.

Proof. Suppose X is NP-complete and X ∈ coNP. Let a polynomial-time

NTM M decide X. For any language Y ∈ NP, there is a reduction R from

Y to X because X is NP-complete. Now, X ∈ coNP implies Y ∈ coNP by

the closure of reduction; hence

NP ⊆ coNP.

On the other hand, suppose Y ∈ coNP. Then there is a reduction R′ from

Ȳ to X because Ȳ ∈ NP and X is NP-complete. As a result, for all input

strings x,

x ∈ Ȳ iff R′(x) ∈ X.

This implies Ȳ ∈ coNP by the closure of reduction and the assumption of

X ∈ coNP. Consequently, Y ∈ NP and

coNP ⊆ NP.

Thus, NP = coNP.

Problem 2 (25 points). A cut in an undirected graph G = (V,E) is a par-

tition of the nodes into two nonempty sets S and V −S. MAX BISECTION

asks if there is a cut of size at least K such that |S| = |V −S|. It is known that

MAX BISECTION is NP-complete. BISECTION WIDTH asks if there is a

bisection of size at most K such that |S| = |V −S|. Show that BISECTION

WIDTH is NP-complete. You do not need to show it is in NP.

Proof. See pp. 368–369 in the slides.



Problem 3 (25 points). Show that 6-COLORING is NP-hard. (6-COLORING

asks if a graph can be colored by 6 or fewer colors such that no adjacent nodes

have the same color). You do not need to show it is in NP. Recall that 3-

COLORING is NP-complete.

Proof. We reduce 3-COLORING to 6-COLORING. Given a graph G(V,E)

for 3-COLORING, the reduction outputs a graph G′(V ′, E ′) by adding 3 new

nodes with edges between each of the 3 nodes and all the other nodes in V .

That is, V ′ = V ∪{x1, x2, x3} and E ′ = E∪{{xi, v}|v ∈ V ′, i = 1, 2, 3, xi 6= v}.
If G ∈ 3-COLORING, then G′ ∈ 6-COLORING because 3 or fewer colors for

the nodes in V and an additional 3 colors for those in {x1, x2, x3} suffice to

make a legal coloring. Conversely, consider a legal coloring of G′ with 6 or

fewer colors. In such a coloring, {x1, x2, x3} use up 3 colors, leaving at most

3 colors for the nodes in V .

Problem 4 (25 points). We know that 3-sat is NP-complete. Show that

for n > 3, n-sat is also NP-complete. (You don’t need to show that is in

NP.)

Proof. We reduce 3-sat to n-sat as follows. Let φ be an instance of 3-

sat. For any clause (a ∨ b ∨ c), we replace it with (a ∨ b ∨ c ∨ · · · ∨ c︸ ︷︷ ︸
n−2 times

). By

repeating this process in all the clauses of φ, we get a new boolean expression

φ′ ∈ n-sat. Now, we proceed to show that this is a reduction from 3-sat to

n-sat as follows:

(⇒) From the construction, we see that if a truth assignment satisfies φ,

then it must satisfy φ′.

(⇐) Let’s notice that if a truth assignment satisfy φ′, then it must also

satisfy φ.

From this, we then deduct that φ is satisfiable if and only if φ′ is satisfiable as

well, hence 3-sat is reducible to n-sat, probing that n-sat is NP-complete.


