
Bipartite Perfect Matching

• We are given a bipartite graph G = (U, V,E).

– U = {u1, u2, . . . , un}.
– V = {v1, v2, . . . , vn}.
– E ⊆ U × V .

• We are asked if there is a perfect matching.

– A permutation π of {1, 2, . . . , n} such that

(ui, vπ(i)) ∈ E

for all i ∈ {1, 2, . . . , n}.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 480

A Perfect Matching in a Bipartite Graph

X�

X�

X�

X�

X�

Y�

Y�

Y�

Y�

Y�

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 481

Symbolic Determinants

• We are given a bipartite graph G.

• Construct the n× n matrix AG whose (i, j)th entry AG
ij

is a symbolic variable xij if (ui, vj) ∈ E and 0 otherwise,

or

AG
ij =

 xij , if (ui, vj) ∈ E,

0, othersie.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 482

Symbolic Determinants (continued)

• The matrix for the bipartite graph G on p. 481 isa

AG =



0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55


. (6)

aThe idea is similar to the Tanner graph in coding theory by Tanner

(1981).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 483

Symbolic Determinants (concluded)

• The determinant of AG is

det(AG) =
∑
π

sgn(π)
n∏

i=1

AG
i,π(i). (7)

– π ranges over all permutations of n elements.

– sgn(π) is 1 if π is the product of an even number of

transpositions and −1 otherwise.

– Equivalently, sgn(π) = 1 if the number of (i, j)s such

that i < j and π(i) > π(j) is even.a

• det(AG) contains n! terms, many of which may be 0s.

aContributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 484

Determinant and Bipartite Perfect Matching

• In
∑

π sgn(π)
∏n

i=1 A
G
i,π(i), note the following:

– Each summand corresponds to a possible perfect

matching π.

– All of these summands
∏n

i=1 A
G
i,π(i) are distinct

monomials and will not cancel.

• det(AG) is essentially an exhaustive enumeration.

Proposition 58 (Edmonds (1967)) G has a perfect

matching if and only if det(AG) is not identically zero.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 485

Perfect Matching and Determinant (p. 481)

X�

X�

X�

X�

X�

Y�

Y�

Y�

Y�

Y�

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 486

Perfect Matching and Determinant (concluded)

• The matrix is (p. 483)

AG =



0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55


.

• det(AG) = −x14x22x35x43x51 + x13x22x35x44x51 +

x14x22x31x43x55 − x13x22x31x44x55.

• Each nonzero term denotes a perfect matching, and vice

versa.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 487

How To Test If a Polynomial Is Identically Zero?

• det(AG) is a polynomial in n2 variables.

• There are exponentially many terms in det(AG).

• Expanding the determinant polynomial is not feasible.

– Too many terms.

• If det(AG) ≡ 0, then it remains zero if we substitute

arbitrary integers for the variables x11, . . . , xnn.

• When det(AG) ̸≡ 0, what is the likelihood of obtaining a

zero?

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 488

Number of Roots of a Polynomial

Lemma 59 (Schwartz (1980)) Let p(x1, x2, . . . , xm) ̸≡ 0

be a polynomial in m variables each of degree at most d. Let

M ∈ Z+. Then the number of m-tuples

(x1, x2, . . . , xm) ∈ {0, 1, . . . ,M − 1}m

such that p(x1, x2, . . . , xm) = 0 is

≤ mdMm−1.

• By induction on m (consult the textbook).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 489

Density Attack

• The density of roots in the domain is at most

mdMm−1

Mm
=

md

M
. (8)

• So suppose p(x1, x2, . . . , xm) ̸≡ 0.

• Then a random

(x1, x2, . . . , xm) ∈ { 0, 1, . . . ,M − 1 }m

has a probability of ≤ md/M of being a root of p.

• Note that M is under our control!

– One can raise M to lower the error probability, e.g.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 490

Density Attack (concluded)

Here is a sampling algorithm to test if p(x1, x2, . . . , xm) ̸≡ 0.

1: Choose i1, . . . , im from {0, 1, . . . ,M − 1} randomly;

2: if p(i1, i2, . . . , im) ̸= 0 then

3: return “p is not identically zero”;

4: else

5: return “p is (probably) identically zero”;

6: end if

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 491

Analysis

• If p(x1, x2, . . . , xm) ≡ 0 , the algorithm will always be

correct as p(i1, i2, . . . , im) = 0.

• Suppose p(x1, x2, . . . , xm) ̸≡ 0.

– The algorithm will answer incorrectly with

probability at most md/M by Eq. (8) on p. 490.

• We next return to the original problem of bipartite

perfect matching.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 492

A Randomized Bipartite Perfect Matching Algorithma

1: Choose n2 integers i11, . . . , inn from {0, 1, . . . , 2n2 − 1}
randomly; {So M = 2n2.}

2: Calculate det(AG(i11, . . . , inn)) by Gaussian elimination;

3: if det(AG(i11, . . . , inn)) ̸= 0 then

4: return “G has a perfect matching”;

5: else

6: return “G has no perfect matchings”;

7: end if

aLovász (1979). According to Paul Erdős, Lovász wrote his first sig-

nificant paper “at the ripe old age of 17.”

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 493

Analysis

• If G has no perfect matchings, the algorithm will always

be correct as det(AG(i11, . . . , inn)) = 0.

• Suppose G has a perfect matching.

– The algorithm will answer incorrectly with

probability at most md/M = 0.5 with m = n2, d = 1

and M = 2n2 in Eq. (8) on p. 490.

• Run the algorithm independently k times.

• Output “G has no perfect matchings” if and only if all

say no.

• The error probability is now reduced to at most 2−k.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 494

Lószló Lovász (1948–)

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 495

Remarksa

• Note that we are calculating

prob[algorithm answers “no” |G has no perfect matchings],

prob[algorithm answers “yes” |G has a perfect matching].

• We are not calculatingb

prob[G has no perfect matchings | algorithm answers “no”],

prob[G has a perfect matching | algorithm answers “yes”].

aThanks to a lively class discussion on May 1, 2008.
bNumerical Recipes in C (1988), “[As] we already remarked, statistics

is not a branch of mathematics!”

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 496

But How Large Can det(AG(i11, . . . , inn)) Be?

• It is at most

n!
(
2n2

)n
.

• Stirling’s formula says n! ∼
√
2πn (n/e)n.

• Hence

log2 det(A
G(i11, . . . , inn)) = O(n log2 n)

bits are sufficient for representing the determinant.

• We skip the details about how to make sure that all

intermediate results are of polynomial sizes.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 497

An Intriguing Questiona

• Is there an (i11, . . . , inn) that will always give correct

answers for the algorithm on p. 493?

• A theorem on p. 591 shows that such an (i11, . . . , inn)

exists!

– Whether it can be found efficiently is another matter.

• Once (i11, . . . , inn) is available, the algorithm can be

made deterministic.

aThanks to a lively class discussion on November 24, 2004.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 498

Randomization vs. Nondeterminisma

• What are the differences between randomized algorithms

and nondeterministic algorithms?

• One can think of a randomized algorithm as a

nondeterministic algorithm but with a probability

associated with every guess/branch.

• So each computation path of a randomized algorithm

has a probability associated with it.

aContributed by Mr. Olivier Valery (D01922033) and Mr. Hasan Al-

hasan (D01922034) on November 27, 2012.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 499

Monte Carlo Algorithmsa

• The randomized bipartite perfect matching algorithm is

called a Monte Carlo algorithm in the sense that

– If the algorithm finds that a matching exists, it is

always correct (no false positives).

– If the algorithm answers in the negative, then it may

make an error (false negatives).

aMetropolis and Ulam (1949).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 500

Monte Carlo Algorithms (continued)

• The algorithm makes a false negative with probability

≤ 0.5.a

– Note this probability refers tob

prob[algorithm answers “no” |G has a perfect matching]

not

prob[G has a perfect matching | algorithm answers “no”].

aEquivalently, among the coin flip sequences, at most half of them

lead to the wrong answer.
bIn general, prob[algorithm answers “no” | input is a “yes” instance].

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 501

Monte Carlo Algorithms (concluded)

• This probability o.5 is not over the space of all graphs or

determinants, but over the algorithm’s own coin flips.

– It holds for any bipartite graph.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 502

The Markov Inequalitya

Lemma 60 Let x be a random variable taking nonnegative

integer values. Then for any k > 0,

prob[x ≥ kE[x]] ≤ 1/k.

• Let pi denote the probability that x = i.

E[x] =
∑
i

ipi =
∑

i<kE[x]

ipi +
∑

i≥kE[x]

ipi

≥
∑

i≥kE[x]

ipi ≥ kE[x]
∑

i≥kE[x]

pi

≥ kE[x]× prob[x ≥ kE[x]].

aAndrei Andreyevich Markov (1856–1922).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 503

Andrei Andreyevich Markov (1856–1922)

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 504

An Application of Markov’s Inequality

• Suppose algorithm C runs in expected time T (n) and

always gives the right answer.

• Consider an algorithm that runs C for time kT (n) and

rejects the input if C does not stop within the time

bound.

• By Markov’s inequality, this new algorithm runs in time

kT (n) and gives the wrong answer with probability

≤ 1/k.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 505

An Application of Markov’s Inequality (concluded)

• By running this algorithm m times (the total running

time is mkT (n)), we reduce the error probability to

≤ k−m.a

• Suppose, instead, we run the algorithm for the same

running time mkT (n) once and rejects the input if it

does not stop within the time bound.

• By Markov’s inequality, this new algorithm gives the

wrong answer with probability ≤ 1/(mk).

• This is much worse than the previous algorithm’s error

probability of ≤ k−m for the same amount of time.

aWith the same input. Thanks to a question on December 7, 2010.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 506

fsat for k-sat Formulas (p. 469)

• Let ϕ(x1, x2, . . . , xn) be a k-sat formula.

• If ϕ is satisfiable, then return a satisfying truth

assignment.

• Otherwise, return “no.”

• We next propose a randomized algorithm for this

problem.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 507

A Random Walk Algorithm for ϕ in CNF Form

1: Start with an arbitrary truth assignment T ;

2: for i = 1, 2, . . . , r do

3: if T |= ϕ then

4: return “ϕ is satisfiable with T”;

5: else

6: Let c be an unsatisfied clause in ϕ under T ; {All of

its literals are false under T .}
7: Pick any x of these literals at random;

8: Modify T to make x true;

9: end if

10: end for

11: return “ϕ is unsatisfiable”;

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 508

3sat vs. 2sat Again

• Note that if ϕ is unsatisfiable, the algorithm will not

refute it.

• The random walk algorithm needs expected exponential

time for 3sat.

– In fact, it runs in expected O((1.333 · · ·+ ϵ)n) time

with r = 3n,a much better than O(2n).b

• We will show immediately that it works well for 2sat.

• The state of the art as of 2006 is expected O(1.322n)

time for 3sat and expected O(1.474n) time for 4sat.c

aUse this setting per run of the algorithm.
bSchöning (1999).
cKwama and Tamaki (2004); Rolf (2006).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 509

Random Walk Works for 2sata

Theorem 61 Suppose the random walk algorithm with

r = 2n2 is applied to any satisfiable 2sat problem with n

variables. Then a satisfying truth assignment will be

discovered with probability at least 0.5.

• Let T̂ be a truth assignment such that T̂ |= ϕ.

• Assume our starting T differs from T̂ in i values.

– Their Hamming distance is i.

– Recall T is arbitrary.

aPapadimitriou (1991).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 510

The Proof

• Let t(i) denote the expected number of repetitions of the

flipping stepa until a satisfying truth assignment is

found.

• It can be shown that t(i) is finite.

• t(0) = 0 because it means that T = T̂ and hence T |= ϕ.

• If T ̸= T̂ or any other satisfying truth assignment, then

we need to flip the coin at least once.

• We flip a coin to pick among the 2 literals of a clause

not satisfied by the present T .

• At least one of the 2 literals is true under T̂ because T̂

satisfies all clauses.
aThat is, Statement 7.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 511

The Proof (continued)

• So we have at least 0.5 chance of moving closer to T̂ .

• Thus

t(i) ≤ t(i− 1) + t(i+ 1)

2
+ 1

for 0 < i < n.

– Inequality is used because, for example, T may differ

from T̂ in both literals.

• It must also hold that

t(n) ≤ t(n− 1) + 1

because at i = n, we can only decrease i.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 512

The Proof (continued)

• Now, put the necessary relations together:

t(0) = 0, (9)

t(i) ≤ t(i− 1) + t(i+ 1)

2
+ 1, 0 < i < n, (10)

t(n) ≤ t(n− 1) + 1. (11)

• Technically, this is a one-dimensional random walk with

an absorbing barrier at i = 0 and a reflecting barrier at

i = n (if we replace “≤” with “=”).a

aThe proof in the textbook does exactly that. But a student pointed

out difficulties with this proof technique on December 8, 2004. So our

proof here uses the original inequalities.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 513

The Proof (continued)

• Add up the relations for

2t(1), 2t(2), 2t(3), . . . , 2t(n− 1), t(n) to obtaina

2t(1) + 2t(2) + · · ·+ 2t(n− 1) + t(n)

≤ t(0) + t(1) + 2t(2) + · · ·+ 2t(n− 2) + 2t(n− 1) + t(n)

+2(n− 1) + 1.

• Simplify it to yield

t(1) ≤ 2n− 1. (12)

aAdding up the relations for t(1), t(2), t(3), . . . , t(n−1) will also work,

thanks to Mr. Yen-Wu Ti (D91922010).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 514

The Proof (continued)

• Add up the relations for 2t(2), 2t(3), . . . , 2t(n− 1), t(n)

to obtain

2t(2) + · · ·+ 2t(n− 1) + t(n)

≤ t(1) + t(2) + 2t(3) + · · ·+ 2t(n− 2) + 2t(n− 1) + t(n)

+2(n− 2) + 1.

• Simplify it to yield

t(2) ≤ t(1) + 2n− 3 ≤ 2n− 1 + 2n− 3 = 4n− 4

by Eq. (12) on p. 514.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 515

The Proof (continued)

• Continuing the process, we shall obtain

t(i) ≤ 2in− i2.

• The worst upper bound happens when i = n, in which

case

t(n) ≤ n2.

• We conclude that

t(i) ≤ t(n) ≤ n2

for 0 ≤ i ≤ n.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 516

The Proof (concluded)

• So the expected number of steps is at most n2.

• The algorithm picks r = 2n2.

– This amounts to invoking the Markov inequality

(p. 503) with k = 2, resulting in a probability of 0.5.a

• The proof does not yield a polynomial bound for 3sat.b

aRecall p. 505.
bContributed by Mr. Cheng-Yu Lee (R95922035) on November 8,

2006.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 517

Christos Papadimitriou (1949–)

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 518

Boosting the Performance

• We can pick r = 2mn2 to have an error probability of

≤ 1

2m

by Markov’s inequality.

• Alternatively, with the same running time, we can run

the “r = 2n2” algorithm m times.

• The error probability is now reduced to

≤ 2−m.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 519

Primality Tests

• primes asks if a number N is a prime.

• The classic algorithm tests if k |N for k = 2, 3, . . . ,
√
N .

• But it runs in Ω(2(log2 N)/2) steps.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 520

Primality Tests (concluded)

• Suppose N = PQ is a product of 2 distinct primes.

• The probability of success of the density attack (p. 450)

is

≈ 2√
N

when P ≈ Q.

• This probability is exponentially small in terms of the

input length log2 N .

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 521

The Fermat Test for Primality

Fermat’s “little” theorem (p. 453) suggests the following

primality test for any given number N :

1: Pick a number a randomly from {1, 2, . . . , N − 1};
2: if aN−1 ̸= 1 mod N then

3: return “N is composite”;

4: else

5: return “N is a prime”;

6: end if

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 522

The Fermat Test for Primality (concluded)

• Carmichael numbers are composite numbers that will

pass the Fermat test for all a ∈ {1, 2, . . . , N − 1}.a

– The Fermat test will return “N is a prime” for all

Carmichael numbers N .

• Unfortunately, there are infinitely many Carmichael

numbers.b

• In fact, the number of Carmichael numbers less than N

exceeds N2/7 for N large enough.

• So the Fermat test is an incorrect algorithm for primes.

aCarmichael (1910). Lo (1994) mantions an investment strategy

based on such numbers!
bAlford, Granville, and Pomerance (1992).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 523

Square Roots Modulo a Prime

• Equation x2 = a mod p has at most two (distinct) roots

by Lemma 57 (p. 458).

– The roots are called square roots.

– Numbers a with square roots and gcd(a, p) = 1 are

called quadratic residues.

∗ They are

12 mod p, 22 mod p, . . . , (p− 1)2 mod p.

• We shall show that a number either has two roots or has

none, and testing which is the case is trivial.a

aBut no efficient deterministic general-purpose square-root-extracting

algorithms are known yet.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 524

Euler’s Test

Lemma 62 (Euler) Let p be an odd prime and

a ̸= 0 mod p.

1. If

a(p−1)/2 = 1 mod p,

then x2 = a mod p has two roots.

2. If

a(p−1)/2 ̸= 1 mod p,

then

a(p−1)/2 = −1 mod p

and x2 = a mod p has no roots.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 525

The Proof (continued)

• Let r be a primitive root of p.

• By Fermat’s “little” theorem,

r(p−1)/2

is a square root of 1.

• So

r(p−1)/2 = 1 or −1 mod p.

• But as r is a primitive root, r(p−1)/2 ̸= 1 mod p.

• Hence

r(p−1)/2 = −1 mod p.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 526

The Proof (continued)

• Let a = rk mod p for some k.

• Then

1 = a(p−1)/2 = rk(p−1)/2 =
[
r(p−1)/2

]k
= (−1)k mod p.

• So k must be even.

• Suppose a = r2j for some 1 ≤ j ≤ (p− 1)/2.

• Then a(p−1)/2 = rj(p−1) = 1 mod p, and a’s two distinct

roots are rj ,−rj(= rj+(p−1)/2 mod p).

– If rj = −rj mod p, then 2rj = 0 mod p, which implies

rj = 0 mod p, a contradiction.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 527

The Proof (continued)

• As 1 ≤ j ≤ (p− 1)/2, there are (p− 1)/2 such a’s.

• Each such a has 2 distinct square roots.

• The square roots of all the a’s are distinct.

– The square roots of different a’s must be different.

• Hence the set of square roots is {1, 2, . . . , p− 1}.

• As a result, a = r2j , 1 ≤ j ≤ (p− 1)/2, exhaust all the

quadratic residues.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 528

The Proof (concluded)

• If a = r2j+1, then it has no roots because all the square

roots have been taken.

• Now,

a(p−1)/2 =
[
r(p−1)/2

]2j+1

= (−1)2j+1 = −1 mod p.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 529

The Legendre Symbola and Quadratic Residuacity Test

• By Lemma 62 (p. 525) a(p−1)/2 mod p = ±1 for

a ̸= 0 mod p.

• For odd prime p, define the Legendre symbol (a | p) as

(a | p) =


0 if p | a,

1 if a is a quadratic residue modulo p,

−1 if a is a quadratic nonresidue modulo p.

• Euler’s test (p. 525) implies

a(p−1)/2 = (a | p) mod p

for any odd prime p and any integer a.

• Note that (ab|p) = (a|p)(b|p).
aAndrien-Marie Legendre (1752–1833).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 530

