
The Primality Problem

• An integer p is prime if p > 1 and all positive numbers

other than 1 and p itself cannot divide it.

• primes asks if an integer N is a prime number.

• Dividing N by 2, 3, . . . ,
√
N is not efficient.

– The length of N is only logN , but
√
N = 20.5 logN .

– So it is an exponential-time algorithm.

• A polynomial-time algorithm for primes was not found

until 2002 by Agrawal, Kayal, and Saxena!

• Later, we will focus on efficient “probabilistic”

algorithms for primes (used in Mathematica, e.g.).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 428

1: if n = ab for some a, b > 1 then

2: return “composite”;

3: end if

4: for r = 2, 3, . . . , n − 1 do

5: if gcd(n, r) > 1 then

6: return “composite”;

7: end if

8: if r is a prime then

9: Let q be the largest prime factor of r − 1;

10: if q ≥ 4
√
r logn and n(r−1)/q ̸= 1 mod r then

11: break; {Exit the for-loop.}
12: end if

13: end if

14: end for{r − 1 has a prime factor q ≥ 4
√
r logn.}

15: for a = 1, 2, . . . , 2
√
r logn do

16: if (x − a)n ̸= (xn − a) mod (xr − 1) in Zn[x] then

17: return “composite”;

18: end if

19: end for

20: return “prime”; {The only place with “prime” output.}

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 429

The Primality Problem (concluded)

• NP ∩ coNP is the class of problems that have succinct

certificates and succinct disqualifications.

– Each “yes” instance has a succinct certificate.

– Each “no” instance has a succinct disqualification.

– No instances have both.

• We will see that primes ∈ NP ∩ coNP.

– In fact, primes ∈ P as mentioned earlier.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 430

Primitive Roots in Finite Fields

Theorem 49 (Lucas and Lehmer (1927)) a A number

p > 1 is a prime if and only if there is a number 1 < r < p

such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q ̸= 1 mod p for all prime divisors q of p− 1.

• This r is called the primitive root or generator.

• We will prove the theorem later (see pp. 442ff).

aFrançois Edouard Anatole Lucas (1842–1891); Derrick Henry

Lehmer (1905–1991).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 431

Derrick Lehmer (1905–1991)

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 432

Pratt’s Theorem

Theorem 50 (Pratt (1975)) primes ∈ NP ∩ coNP.

• primes is in coNP because a succinct disqualification is

a proper divisor.

– A proper divisor of a number n means n is not a

prime.

• Now suppose p is a prime.

• p’s certificate includes the r in Theorem 49 (p. 431).

• Use recursive doubling to check if rp−1 = 1 mod p in

time polynomial in the length of the input, log2 p.

– r, r2, r4, . . . mod p, a total of ∼ log2 p steps.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 433

The Proof (concluded)

• We also need all prime divisors of p− 1: q1, q2, . . . , qk.

– Whether r, q1, . . . , qk are easy to find is irrelevant.

– There may be multiple choices for r.

• Checking r(p−1)/qi ̸= 1 mod p is also easy.

• Checking q1, q2, . . . , qk are all the divisors of p− 1 is easy.

• We still need certificates for the primality of the qi’s.

• The complete certificate is recursive and tree-like:

C(p) = (r; q1, C(q1), q2, C(q2), . . . , qk, C(qk)).

• We next prove that C(p) is succinct.

• As a result, C(p) can be checked in polynomial time.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 434

The Succinctness of the Certificate

Lemma 51 The length of C(p) is at most quadratic at

5 log22 p.

• This claim holds when p = 2 or p = 3.

• In general, p− 1 has k ≤ log2 p prime divisors

q1 = 2, q2, . . . , qk.

– Reason:

2k ≤
k∏

i=1

qi ≤ p− 1.

• Note also that, as q1 = 2,

k∏
i=2

qi ≤
p− 1

2
. (4)

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 435

The Proof (continued)

• C(p) requires:

– 2 parentheses;

– 2k < 2 log2 p separators (at most 2 log2 p bits);

– r (at most log2 p bits);

– q1 = 2 and its certificate 1 (at most 5 bits);

– q2, . . . , qk (at most 2 log2 p bits);a

– C(q2), . . . , C(qk).

aWhy?

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 436

The Proof (concluded)

• C(p) is succinct because, by induction,

|C(p)| ≤ 5 log2 p+ 5 + 5
k∑

i=2

log22 qi

≤ 5 log2 p+ 5 + 5

(
k∑

i=2

log2 qi

)2

≤ 5 log2 p+ 5 + 5 log22
p− 1

2
by inequality (4)

< 5 log2 p+ 5 + 5(log2 p− 1)2

= 5 log22 p+ 10− 5 log2 p ≤ 5 log22 p

for p ≥ 4.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 437

A Certificate for 23a

• Note that 7 is a primitive root modulo 23 and

23− 1 = 22 = 2× 11.

• So

C(23) = (7, 2, C(2), 11, C(11)).

• Note that 2 is a primitive root modulo 11 and

11− 1 = 10 = 2× 5.

• So

C(11) = (2, 2, C(2), 5, C(5)).

aThanks to a lively discussion on April 24, 2008.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 438

A Certificate for 23 (concluded)

• Note that 2 is a primitive root modulo 5 and

5− 1 = 4 = 22.

• So

C(5) = (2, 2, C(2)).

• In summary,

C(23) = (7, 2, C(2), 11, (2, 2, C(2), 5, (2, 2, C(2)))).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 439

Basic Modular Arithmeticsa

• Let m,n ∈ Z+.

• m |n means m divides n; m is n’s divisor.

• We call the numbers 0, 1, . . . , n− 1 the residue modulo

n.

• The greatest common divisor of m and n is denoted

gcd(m,n).

• The r in Theorem 49 (p. 431) is a primitive root of p.

• We now prove the existence of primitive roots and then

Theorem 49 (p. 431).

aCarl Friedrich Gauss.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 440

Basic Modular Arithmetics (concluded)

• We use

a ≡ b mod n

if n | (a− b).

– So 25 ≡ 38 mod 13.

• We use

a = b mod n

if b is the remainder of a divided by n.

– So 25 = 12 mod 13.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 441

Euler’sa Totient or Phi Function

• Let

Φ(n) = {m : 1 ≤ m < n, gcd(m,n) = 1}

be the set of all positive integers less than n that are

prime to n.b

– Φ(12) = {1, 5, 7, 11}.

• Define Euler’s function of n to be ϕ(n) = |Φ(n)|.

• ϕ(p) = p− 1 for prime p, and ϕ(1) = 1 by convention.

• Euler’s function is not expected to be easy to compute

without knowing n’s factorization.

aLeonhard Euler (1707–1783).
bZ∗

n is an alternative notation.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 442

��� ��� ��� ��� Q

���

���

���

���

���
I+Q/

HXOHUSKL�QE �

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 443

Two Properties of Euler’s Function

The inclusion-exclusion principlea can be used to prove the

following.

Lemma 52 ϕ(n) = n
∏

p|n(1−
1
p).

• If n = pe11 pe22 · · · peℓℓ is the prime factorization of n, then

ϕ(n) = n
ℓ∏

i=1

(
1− 1

pi

)
.

Corollary 53 ϕ(mn) = ϕ(m)ϕ(n) if gcd(m,n) = 1.

aConsult any textbook on discrete mathematics.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 444

A Key Lemma

Lemma 54
∑

m|n ϕ(m) = n.

• Let
∏ℓ

i=1 p
ki
i be the prime factorization of n and consider

ℓ∏
i=1

[ϕ(1) + ϕ(pi) + · · ·+ ϕ(pki
i)]. (5)

• Equation (5) equals n because ϕ(pki) = pki − pk−1
i by

Lemma 52 (p. 444) so ϕ(1) + ϕ(pi) + · · ·+ ϕ(pki
i) = pki

i .

• Expand Eq. (5) to yield

∑
k′
1≤k1,...,k′

ℓ≤kℓ

ℓ∏
i=1

ϕ(p
k′
i

i).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 445

The Proof (concluded)

• By Corollary 53 (p. 444),

ℓ∏
i=1

ϕ(p
k′
i

i) = ϕ

(
ℓ∏

i=1

p
k′
i

i

)
.

• So Eq. (5) becomes ∑
k′
1≤k1,...,k′

ℓ≤kℓ

ϕ

(
ℓ∏

i=1

p
k′
i

i

)
.

• Each
∏ℓ

i=1 p
k′
i

i is a unique divisor of n =
∏ℓ

i=1 p
ki
i .

• Equation (5) becomes ∑
m|n

ϕ(m).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 446

Leonhard Euler (1707–1783)

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 447

The Density Attack for primes

Witnesses to

compositeness

of
n

All numbers <
n

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 448

The Density Attack for primes

1: Pick k ∈ {1, . . . , n} randomly;

2: if k |n and k ̸= n then

3: return “n is composite”;

4: else

5: return “n is (probably) a prime”;

6: end if

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 449

The Density Attack for primes (continued)

• It works, but does it work well?

• The ratio of numbers ≤ n relatively prime to n (the

white ring) is
ϕ(n)

n
.

• When n = pq, where p and q are distinct primes,

ϕ(n)

n
=

pq − p− q + 1

pq
> 1− 1

q
− 1

p
.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 450

The Density Attack for primes (concluded)

• So the ratio of numbers ≤ n not relatively prime to n

(the grey area) is < (1/q) + (1/p).

– The “density attack” has probability about 2/
√
n of

factoring n = pq when p ∼ q = O(
√
n).

– The “density attack” to factor n = pq hence takes

Ω(
√
n) steps on average when p ∼ q = O(

√
n).

– This running time is exponential: Ω(20.5 log2 n).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 451

The Chinese Remainder Theorem

• Let n = n1n2 · · ·nk, where ni are pairwise relatively

prime.

• For any integers a1, a2, . . . , ak, the set of simultaneous

equations

x = a1 mod n1,

x = a2 mod n2,

...

x = ak mod nk,

has a unique solution modulo n for the unknown x.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 452

Fermat’s “Little” Theorema

Lemma 55 For all 0 < a < p, ap−1 = 1 mod p.

• Recall Φ(p) = {1, 2, . . . , p− 1}.

• Consider aΦ(p) = {am mod p : m ∈ Φ(p)}.

• aΦ(p) = Φ(p).

– aΦ(p) ⊆ Φ(p) as a remainder must be between 1 and

p− 1.

– Suppose am = am′ mod p for m > m′, where

m,m′ ∈ Φ(p).

– That means a(m−m′) = 0 mod p, and p divides a or

m−m′, which is impossible.

aPierre de Fermat (1601–1665).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 453

The Proof (concluded)

• Multiply all the numbers in Φ(p) to yield (p− 1)!.

• Multiply all the numbers in aΦ(p) to yield ap−1(p− 1)!.

• As aΦ(p) = Φ(p), ap−1(p− 1)! = (p− 1)! mod p.

• Finally, ap−1 = 1 mod p because p ̸ |(p− 1)!.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 454

The Fermat-Euler Theorema

Corollary 56 For all a ∈ Φ(n), aϕ(n) = 1 mod n.

• The proof is similar to that of Lemma 55 (p. 453).

• Consider aΦ(n) = {am mod n : m ∈ Φ(n)}.

• aΦ(n) = Φ(n).

– aΦ(n) ⊆ Φ(n) as a remainder must be between 0 and

n− 1 and relatively prime to n.

– Suppose am = am′ mod n for m′ < m < n, where

m,m′ ∈ Φ(n).

– That means a(m−m′) = 0 mod n, and n divides a or

m−m′, which is impossible.
aProof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on Novem-

ber 24, 2004.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 455

The Proof (concluded)a

• Multiply all the numbers in Φ(n) to yield
∏

m∈Φ(n) m.

• Multiply all the numbers in aΦ(n) to yield

aϕ(n)
∏

m∈Φ(n) m.

• As aΦ(n) = Φ(n),

∏
m∈Φ(n)

m = aϕ(n)

 ∏
m∈Φ(n)

m

 mod n.

• Finally, aϕ(n) = 1 mod n because n ̸ |
∏

m∈Φ(n) m.

aSome typographical errors corrected by Mr. Jung-Ying Chen

(D95723006) on November 18, 2008.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 456

An Example

• As 12 = 22 × 3,

ϕ(12) = 12×
(
1− 1

2

)(
1− 1

3

)
= 4.

• In fact, Φ(12) = {1, 5, 7, 11}.

• For example,

54 = 625 = 1 mod 12.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 457

Exponents

• The exponent of m ∈ Φ(p) is the least k ∈ Z+ such that

mk = 1 mod p.

• Every residue s ∈ Φ(p) has an exponent.

– 1, s, s2, s3, . . . eventually repeats itself modulo p, say

si = sj mod p, which means sj−i = 1 mod p.

• If the exponent of m is k and mℓ = 1 mod p, then k|ℓ.
– Otherwise, ℓ = qk + a for 0 < a < k, and

mℓ = mqk+a = ma = 1 mod p, a contradiction.

Lemma 57 Any nonzero polynomial of degree k has at most

k distinct roots modulo p.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 458

Exponents and Primitive Roots

• From Fermat’s “little” theorem, all exponents divide

p− 1.

• A primitive root of p is thus a number with exponent

p− 1.

• Let R(k) denote the total number of residues in

Φ(p) = {1, 2, . . . , p− 1} that have exponent k.

• We already knew that R(k) = 0 for k ̸ |(p− 1).

• So ∑
k|(p−1)

R(k) = p− 1

as every number has an exponent.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 459

Size of R(k)

• Any a ∈ Φ(p) of exponent k satisfies

xk = 1 mod p.

• Hence there are at most k residues of exponent k, i.e.,

R(k) ≤ k, by Lemma 57 (p. 458).

• Let s be a residue of exponent k.

• 1, s, s2, . . . , sk−1 are distinct modulo p.

– Otherwise, si = sj mod p with i < j.

– Then sj−i = 1 mod p with j − i < k, a contradiction.

• As all these k distinct numbers satisfy xk = 1 mod p,

they comprise all the solutions of xk = 1 mod p.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 460

Size of R(k) (continued)

• But do all of them have exponent k (i.e., R(k) = k)?

• And if not (i.e., R(k) < k), how many of them do?

• Pick sℓ, where ℓ < k.

• Suppose ℓ ̸∈ Φ(k) with gcd(ℓ, k) = d > 1.

• Then

(sℓ)k/d = (sk)ℓ/d = 1 mod p.

• Therefore, sℓ has exponent at most k/d < k.

• We conclude that

R(k) ≤ ϕ(k).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 461

Size of R(k) (concluded)

• Because all p− 1 residues have an exponent,

p− 1 =
∑

k|(p−1)

R(k) ≤
∑

k|(p−1)

ϕ(k) = p− 1

by Lemma 54 (p. 445).

• Hence

R(k) =

 ϕ(k) when k|(p− 1)

0 otherwise

• In particular, R(p− 1) = ϕ(p− 1) > 0, and p has at least

one primitive root.

• This proves one direction of Theorem 49 (p. 431).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 462

A Few Calculations

• Let p = 13.

• From p. 455, we know ϕ(p− 1) = 4.

• Hence R(12) = 4.

• Indeed, there are 4 primitive roots of p.

• As

Φ(p− 1) = {1, 5, 7, 11},

the primitive roots are

g1, g5, g7, g11

for any primitive root g.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 463

The Other Direction of Theorem 49 (p. 431)

• We show p is a prime if there is a number r such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q ̸= 1 mod p for all prime divisors q of p− 1.

• Suppose p is not a prime.

• We proceed to show that no primitive roots exist.

• Suppose rp−1 = 1 mod p (note gcd(r, p) = 1).

• We will show that the 2nd condition must be violated.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 464

The Proof (continued)

• So we proceed to show r(p−1)/q = 1 mod p for some

prime divisor q of p− 1.

• rϕ(p) = 1 mod p by the Fermat-Euler theorem (p. 455).

• Because p is not a prime, ϕ(p) < p− 1.

• Let k be the smallest integer such that rk = 1 mod p.

• With the 1st condition, it is easy to show that k | (p− 1)

(similar to p. 458).

• Note that k |ϕ(p) (p. 458).

• As k ≤ ϕ(p), k < p− 1.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 465

The Proof (concluded)

• Let q be a prime divisor of (p− 1)/k > 1.

• Then k|(p− 1)/q.

• By the definition of k,

r(p−1)/q = 1 mod p.

• But this violates the 2nd condition.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 466

Function Problems

• Decision problems are yes/no problems (sat, tsp (d),

etc.).

• Function problems require a solution (a satisfying

truth assignment, a best tsp tour, etc.).

• Optimization problems are clearly function problems.

• What is the relation between function and decision

problems?

• Which one is harder?

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 467

Function Problems Cannot Be Easier than Decision
Problems

• If we know how to generate a solution, we can solve the

corresponding decision problem.

– If you can find a satisfying truth assignment

efficiently, then sat is in P.

– If you can find the best tsp tour efficiently, then tsp

(d) is in P.

• But decision problems can be as hard as the

corresponding function problems.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 468

fsat

• fsat is this function problem:

– Let ϕ(x1, x2, . . . , xn) be a boolean expression.

– If ϕ is satisfiable, then return a satisfying truth

assignment.

– Otherwise, return “no.”

• We next show that if sat ∈ P, then fsat has a

polynomial-time algorithm.

• sat is a subroutine (black box) that returns “yes” or

“no” on the satisfiability of the input.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 469

An Algorithm for fsat Using sat
1: t := ϵ; {Truth assignment.}
2: if ϕ ∈ sat then

3: for i = 1, 2, . . . , n do

4: if ϕ[xi = true] ∈ sat then

5: t := t ∪ {xi = true };
6: ϕ := ϕ[xi = true];

7: else

8: t := t ∪ {xi = false };
9: ϕ := ϕ[xi = false];

10: end if

11: end for

12: return t;

13: else

14: return “no”;

15: end if

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 470

Analysis

• If sat can be solved in polynomial time, so can fsat.

– There are ≤ n+ 1 calls to the algorithm for sat.a

– Boolean expressions shorter than ϕ are used in each

call to the algorithm for sat.

• Hence sat and fsat are equally hard (or easy).

• Note that this reduction from fsat to sat is not a Karp

reduction (recall p. 247).

• Instead, it calls sat multiple times as a subroutine and

moves on sat’s outputs.

aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 471

tsp and tsp (d) Revisited

• We are given n cities 1, 2, . . . , n and integer distances

dij = dji between any two cities i and j.

• tsp (d) asks if there is a tour with a total distance at

most B.

• tsp asks for a tour with the shortest total distance.

– The shortest total distance is at most
∑

i,j dij .

∗ Recall that the input string contains d11, . . . , dnn.

∗ Thus the shortest total distance is less than 2|x | in

magnitude, where x is the input (why?).

• We next show that if tsp (d) ∈ P, then tsp has a

polynomial-time algorithm.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 472

An Algorithm for tsp Using tsp (d)

1: Perform a binary search over interval [0, 2| x |] by calling

tsp (d) to obtain the shortest distance, C;

2: for i, j = 1, 2, . . . , n do

3: Call tsp (d) with B = C and dij = C + 1;

4: if “no” then

5: Restore dij to old value; {Edge [i, j] is critical.}
6: end if

7: end for

8: return the tour with edges whose dij ≤ C;

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 473

Analysis

• An edge that is not on any optimal tour will be

eliminated, with its dij set to C + 1.

• An edge which is not on all remaining optimal tours will

also be eliminated.

• So the algorithm ends with n edges which are not

eliminated (why?).

• This is true even if there are multiple optimal tours!a

aThanks to a lively class discussion on November 12, 2013.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 474

Analysis (concluded)

• There are O(|x |+n2) calls to the algorithm for tsp (d).

• Each call has an input length of O(|x |).

• So if tsp (d) can be solved in polynomial time, so can

tsp.

• Hence tsp (d) and tsp are equally hard (or easy).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 475

Randomized Computation

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 476

I know that half my advertising works,

I just don’t know which half.

— John Wanamaker

I know that half my advertising is

a waste of money,

I just don’t know which half!

— McGraw-Hill ad.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 477

Randomized Algorithmsa

• Randomized algorithms flip unbiased coins.

• There are important problems for which there are no

known efficient deterministic algorithms but for which

very efficient randomized algorithms exist.

– Extraction of square roots, for instance.

• There are problems where randomization is necessary.

– Secure protocols.

• Randomized version can be more efficient.

– Parallel algorithm for maximal independent set.b

aRabin (1976); Solovay and Strassen (1977).
b“Maximal” (a local maximum) not “maximum” (a global maximum).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 478

“Four Most Important Randomized Algorithms”a

1. Primality testing.b

2. Graph connectivity using random walks.c

3. Polynomial identity testing.d

4. Algorithms for approximate counting.e

aTrevisan (2006).
bRabin (1976); Solovay and Strassen (1977).
cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
dSchwartz (1980); Zippel (1979).
eSinclair and Jerrum (1989).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 479

