The Primality Problem

An integer p is prime if p > 1 and all positive numbers

other than 1 and p itself cannot divide it.

PRIMES asks if an integer N is a prime number.

Dividing N by 2,3,..., VN is not efficient.

— The length of N is only log N, but /N = 20-5loe N

— So it is an exponential-time algorithm.

A polynomial-time algorithm for PRIMES was not found
until 2002 by Agrawal, Kayal, and Saxenal

Later, we will focus on efficient “probabilistic”
algorithms for PRIMES (used in Mathematica, e.g.).
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if n = a® for some a,b > 1 then
return “composite”;

end if

: forr=2,3,...,n—1do

if gcd(n,r) > 1 then
return “composite”;

end if

if r is a prime then

Let q be the largest prime factor of r — 1;
if ¢ > 4y/Tlogn and n{""1/9 £ 1 mod r then

break; {Exit the for-loop.}
end if
end if
: end for{r — 1 has a prime factor ¢ > 4y/rlogn.}
: fora=1,2,...,2y/rlogn do
if (x —a)™ # (2 —a) mod (" — 1) in Z,,[z ] then
return “composite”;
end if
: end for
: return “prime”; {The only place with “prime” output.}
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The Primality Problem (concluded)

e NP N coNP is the class of problems that have succinct
certificates and succinct disqualifications.

— Each “yes” instance has a succinct certificate.
— Each “no” instance has a succinct disqualification.

— No instances have both.

e We will see that PRIMES € NP N coNP.

— In fact, PRIMES € P as mentioned earlier.
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Primitive Roots in Finite Fields

Theorem 49 (Lucas and Lehmer (1927)) ® A number
p > 1 is a prime if and only if there is a number 1 <r <p
such that

1. v~ =1 mod p, and

2. rP=1/a £ 1 mod p for all prime divisors q of p — 1.

e This r is called the primitive root or generator.

e We will prove the theorem later (see pp. 442ff).

2Frangois Edouard Anatole Lucas (1842-1891); Derrick Henry
Lehmer (1905-1991).
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Derrick Lehmer (1905-1991)
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Pratt's Theorem

Theorem 50 (Pratt (1975)) PRIMES € NP N coNP.

e PRIMES is in coNP because a succinct disqualification is

a proper divisor.

— A proper divisor of a number n means n is not a

prime.
e Now suppose p is a prime.

e p’s certificate includes the 7 in Theorem 49 (p. 431).

e Use recursive doubling to check if 7P~ =1 mod p in

time polynomial in the length of the input, log, p.

— r,r2,rt, ... mod p, a total of ~ log, p steps.
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The Proof (concluded)

We also need all prime divisors of p — 1: q1,qo, ..., qk.
— Whether r,qq,..., gy are easy to find is irrelevant.

— There may be multiple choices for r.

Checking r(P~1)/4% £ 1 mod p is also easy.

Checking q1, qo, ..., q. are all the divisors of p — 1 is easy.
We still need certificates for the primality of the g;’s.

The complete certificate is recursive and tree-like:

C(p) = (r;¢1,C(q1), 92, C(q2), - - -, a, Cqr))-

We next prove that C(p) is succinct.

As a result, C'(p) can be checked in polynomial time.
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The Succinctness of the Certificate
Lemma 51 The length of C(p) is at most quadratic at
51og; p.
e This claim holds when p = 2 or p = 3.

e In general, p — 1 has £ < log, p prime divisors
1 =2,q2,- -, Gk

— Reason:

k
2k SH%‘SP—L
i—1

e Note also that, as ¢; = 2,
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The Proof (continued)

C'(p) requires:

2 parentheses;
2k < 2log, p separators (at most 2log, p bits);
r (at most log, p bits);
g1 = 2 and its certificate 1 (at most 5 bits);
g2, ---,qr (at most 2log, p bits);?
C(q2),---,Clar).

aWhy?
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The Proof (concluded)

e ('(p) is succinct because, by induction,

k
C(p)] < 5logyp+5+5)» logj g
1=2

2
k
5logyp+ 5+ 5 (Z log, qi>

1=2

—1
5logy p+ 5 + 5log; pT by inequality (4)

51ogy p + 5+ 5(logy p — 1)°
5logs p 4+ 10 — 5log, p < 5logs p
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A Certificate for 232

Note that 7 is a primitive root modulo 23 and
23 —1=22=2 x 11.

So
C'(23) =(7,2,C(2),11,C(11)).

Note that 2 is a primitive root modulo 11 and
11—-1=10=2 x 5.

So

C(11) = (2,2,C(2),5,0(5)).

aThanks to a lively discussion on April 24, 2008.
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A Certificate for 23 (concluded)

e Note that 2 is a primitive root modulo 5 and
h—1=4=22

e So

C'(5) =(2,2,C(2)).

e In summary,

C(23) = (7,2, C(2),11, (2,2, C(2), 5, (2,2,C(2)))).
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Basic Modular Arithmetics®
Let m,n € Z*.
m |n means m divides n; m is n’s divisor.

We call the numbers 0,1,...,n — 1 the residue modulo

n.

The greatest common divisor of m and n is denoted

ged(m,n).

The r in Theorem 49 (p. 431) is a primitive root of p.

We now prove the existence of primitive roots and then
Theorem 49 (p. 431).

@(Carl Friedrich Gauss.
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Basic Modular Arithmetics (concluded)

e We use

a=b modn
if n|(a—b).
— So 25 = 38 mod 13.

o We use

a=>bmodn

if b is the remainder of a divided by n.

— So 25 =12 mod 13.
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Euler's® Totient or Phi Function

Let
¢(n)={m:1<m < n,ged(m,n) =1}

be the set of all positive integers less than n that are

prime to n.”

— ®(12) = {1,5,7,11}.

Define Euler’s function of n to be ¢(n) = |®(n)|.

p — 1 for prime p, and ¢(1) = 1 by convention.

Euler’s function is not expected to be easy to compute

without knowing n’s factorization.

2Leonhard Euler (1707-1783).
bZ* is an alternative notation.
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Two Properties of Euler's Function

The inclusion-exclusion principle* can be used to prove the

following.

Lemma 52 ¢(n) =n][],,(1— %)

o If n =pi'p5®---p,’ is the prime factorization of n, then

qﬁ(n):nﬁ(l;).

Corollary 53 ¢(mn) = ¢(m) ¢(n) if gcd(m,n) = 1.

2Consult any textbook on discrete mathematics.
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A Key Lemma

Lemma 54 ) . &(m)=n.

o Let Hle D; *i he the prime factorization of n and consider

14

[[lo(1) + o) + -+ d(p) . (5)

1=1

e Equation (5) equals n because qb(p,’f) pr— p,’f_l by
Lemma 52 (p. 444) so ¢(1) + ¢(ps) + - - - + d(p?*) = pi.

e Expand Eq. (5) to yield

J4
D | )

K, <ki,...,k)<kgi=1
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The Proof (concluded)
By Corollary 53 (p. 444),

So Eq. (5) becomes

=

kY <ki,....k, <k

1=1

/

0 k. . . .. Y .
Each [[,_; p;* is a unique divisor of n = [],_; pfz.

Equation (5) becomes

> é(m).

m|n
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Leonhard Euler (1707-1783)
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The Density Attack for PRIMES
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The Density Attack for PRIMES
. Pick k € {1,...,n} randomly;
. if k|n and k # n then
return “n is composite”;

. else

. return “n is (probably) a prime”;
: end lf
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The Density Attack for PRIMES (continued)

e It works, but does it work well?

e The ratio of numbers < n relatively prime to n (the

white ring) is

(n)

n

e When n = pqg, where p and ¢q are distinct primes,

—p—q+1 11
o(n) _pg—p—q+1l

n pq qg P
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The Density Attack for PRIMES (concluded)

e So the ratio of numbers < n not relatively prime to n
(the grey area) is < (1/q) + (1/p).
— The “density attack” has probability about 2/4/n of
factoring n = pg when p ~ ¢ = O(y/n).
— The “density attack” to factor n = pg hence takes
Q(y/n) steps on average when p ~ g = O(y/n).

— This running time is exponential: (20-5827),
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The Chinese Remainder Theorem

e Let n =nyns---ni, where n; are pairwise relatively

prime.

e For any integers ai,as,...,ax, the set of simultaneous

equations

a1 mod nq,

as mod no,

x ar, mod ng,

has a unique solution modulo n for the unknown =.
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Fermat's “Little” Theorem?

Lemma 55 For all0 < a < p, a?~! =1 mod p.

e Recall ®(p) ={1,2,...,p—1}.

e Consider a®(p) = {am mod p: m € ®(p)}.

— a®(p) C ®(p) as a remainder must be between 1 and
p— 1.

— Suppose am = am’ mod p for m > m’, where
m, m’ € ®(p).

— That means a(m —m’) = 0 mod p, and p divides a or

m — m/, which is impossible.

2Pierre de Fermat (1601-1665).
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The Proof (concluded)
Multiply all the numbers in ®(p) to yield (p — 1)!.

Multiply all the numbers in a®(p) to yield a?~1(p — 1)!.

As a®(p) = ®(p), a1 (p —1)! = (p — 1)! mod p.

Finally, a?~! = 1 mod p because p f(p — 1)!.
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The Fermat-Euler Theorem?

Corollary 56 For all a € ®(n), a®™ =1 mod n.

e The proof is similar to that of Lemma 55 (p. 453).
e Consider a®(n) = {am mod n : m € ®(n)}.
e ad(n) =&(n).
— a®(n) C &(n) as a remainder must be between 0 and
n — 1 and relatively prime to n.
— Suppose am = am’ mod n for m’ < m < n, where
m,m’ € ®(n).
— That means a(m —m’) = 0 mod n, and n divides a or
m — m/, which is impossible.

2Proof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on Novem-
ber 24, 2004.
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The Proof (concluded)?

e Multiply all the numbers in ®(n) to yield [[,,cq(,) m-

e Multiply all the numbers in a®(n) to yield
a(b(n) HmECI)(n) m.
e As a®(n) = ®(n),

H m = q®(" H m | mod n.

meP(n) med(n)

e Finally, a®™ = 1 mod n because n [ [Lcam) m-

aSome typographical errors corrected by Mr. Jung-Ying Chen
(D95723006) on November 18, 2008.
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An Example

o As 12 =122 x3,

$(12) = 12 x (1-%) (1-%):4.

o In fact, ®(12) = {1,5,7,11}.

e For example,
5% = 625 = 1 mod 12.
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Exponents

e The exponent of m € ®(p) is the least k € Z™ such that
mF =1 mod p.

e Every residue s € ®(p) has an exponent.

— 1,s,5°%, 5%, ... eventually repeats itself modulo p, say

s = s7 mod p, which means s/~* = 1 mod p.

e If the exponent of m is k and m* = 1 mod p, then k|.

— Otherwise, { = gk + a for 0 < a < k, and

mt = ma+te = m? = 1 mod p, a contradiction.

Lemma 57 Any nonzero polynomial of degree k has at most

k distinct roots modulo p.
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Exponents and Primitive Roots

From Fermat’s “little” theorem, all exponents divide
p— 1.
A primitive root of p is thus a number with exponent
p— 1.

Let R(k) denote the total number of residues in
d(p) ={1,2,...,p— 1} that have exponent k.

We already knew that R(k) =0 for k& f(p —1).
S0

as every number has an exponent.
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Size of R(k)

Any a € ®(p) of exponent k satisfies

z* = 1 mod p.

Hence there are at most k£ residues of exponent k, i.e.,
R(k) < k, by Lemma 57 (p. 458).

Let s be a residue of exponent k.

1,s,s%,...,s" 1 are distinct modulo p.

— Otherwise, s* = s/ mod p with i < j.
— Then s7* = 1 mod p with j — i < k, a contradiction.

As all these k distinct numbers satisfy ¥ = 1 mod p,

they comprise all the solutions of ¥ = 1 mod p.
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Size of R(k) (continued)
But do all of them have exponent k (i.e., R(k) = k)?
And if not (i.e., R(k) < k), how many of them do?
Pick s¢, where ¢ < k.
Suppose ¢ ¢ ®(k) with ged(l, k) =d > 1.
Then

(s9)k/4 = (s¥)¢/4 = 1 mod p.

Therefore, s* has exponent at most k/d < k.

We conclude that

R(k) < ¢(k).
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Size of R(k) (concluded)

Because all p — 1 residues have an exponent,
p—1= > Rk)< Y ¢k =p—1
k[(p—1) k[(p—1)

by Lemma 54 (p. 445).

Hence
¢(k) when k|(p—1)

0 otherwise

R(k)

In particular, R(p —1) = ¢(p— 1) > 0, and p has at least

one primitive root.

This proves one direction of Theorem 49 (p. 431).

©2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 462



A Few Calculations
Let p = 13.
From p. 455, we know ¢(p — 1) = 4.
Hence R(12) = 4.

Indeed, there are 4 primitive roots of p.

As
Od(p—1)={1,5,7,11},

the primitive roots are

g, 9°,9", 9"

for any primitive root g.
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The Other Direction of Theorem 49 (p. 431)

We show p is a prime if there is a number r such that
1. 7?7~ =1 mod p, and

2. r(P=1/4 £ 1 mod p for all prime divisors ¢ of p — 1.
Suppose p is not a prime.

We proceed to show that no primitive roots exist.
Suppose =1 = 1 mod p (note ged(r,p) = 1).

We will show that the 2nd condition must be violated.
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The Proof (continued)

So we proceed to show r(P~1/¢ = 1 mod p for some

prime divisor q of p — 1.

r??) = 1 mod p by the Fermat-Euler theorem (p. 455).
Because p is not a prime, ¢(p) < p — 1.

Let k be the smallest integer such that ¥ = 1 mod p.

With the 1st condition, it is easy to show that k| (p — 1)
(similar to p. 458).

Note that k| ¢(p) (p. 458).
As k< ¢p(p), k<p-—1.
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The Proof (concluded)
Let q be a prime divisor of (p —1)/k > 1.
Then k|(p —1)/q.

By the definition of k,

r(P=1)/4 = 1 mod p.

But this violates the 2nd condition.
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Function Problems

Decision problems are yes/no problems (SAT, TSP (D),
etc.).

Function problems require a solution (a satisfying

truth assignment, a best TSP tour, etc.).
Optimization problems are clearly function problems.

What is the relation between function and decision

problems?

Which one is harder?
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Function Problems Cannot Be Easier than Decision
Problems

e If we know how to generate a solution, we can solve the
corresponding decision problem.

— If you can find a satisfying truth assignment
efficiently, then SAT is in P.

— If you can find the best TSP tour efficiently, then TSP
(D) is in P.

e But decision problems can be as hard as the

corresponding function problems.
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FSAT

FSAT is this function problem:
— Let ¢(x1,22,...,2,) be a boolean expression.

— If ¢ is satisfiable, then return a satisfying truth

assignment.

— Otherwise, return “no.”

We next show that if SAT € P, then FSAT has a
polynomial-time algorithm.

SAT is a subroutine (black box) that returns “yes” or

“no” on the satisfiability of the input.
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An Algorithm for FSAT Using SAT

t := €; {Truth assignment.}
if ¢ € SAT then
for:=1,2,...,ndo
if ¢[x; = true] € SAT then
t:=tU{x; = true};
¢ = ¢|x; = true];
else
t:=tU{x; = false };
¢ = ¢|x; = false];
end if
end for

1:
2:
3:
4.
D:
6:
7
8:
9:

= =
= O

return {¢;
. else

return “no”’;
. end if
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Analysis

If SAT can be solved in polynomial time, so can FSAT.
— There are < n + 1 calls to the algorithm for sAT.?

— Boolean expressions shorter than ¢ are used in each
call to the algorithm for SAT.

Hence SAT and FSAT are equally hard (or easy).

Note that this reduction from FSAT to SAT is not a Karp
reduction (recall p. 247).

Instead, it calls SAT multiple times as a subroutine and
moves on SAT’s outputs.

2Contributed by Ms. Eva Ou (R93922132) on November 24, 2004.
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TSP and TSP (D) Revisited

We are given n cities 1,2, ...,n and integer distances

d;; = dj; between any two cities ¢ and j.

TSP (D) asks if there is a tour with a total distance at

most B.

TSP asks for a tour with the shortest total distance.

— The shortest total distance is at most » ; . ;.

+ Recall that the input string contains dq1, ..., dy,.-
+ Thus the shortest total distance is less than 2!*! in

magnitude, where x is the input (why?).

We next show that if TSP (D) € P, then TSP has a

polynomial-time algorithm.
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An Algorithm for TSP Using TSP (D)

. Perform a binary search over interval [0,2/*!] by calling

TSP (D) to obtain the shortest distance, C;

: fori,7=1,2,...,ndo
Call Tsp (D) with B = C and d;; = C' 4 1;
if “no” then

Restore d;; to old value; {Edge |4, 7] is critical. }

end if

. end for

: return the tour with edges whose d;; < C;
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Analysis

An edge that is not on any optimal tour will be
eliminated, with its d;; set to C' + 1.

An edge which is not on all remaining optimal tours will

also be eliminated.

So the algorithm ends with n edges which are not
eliminated (why?).

e This is true even if there are multiple optimal tours!?

*Thanks to a lively class discussion on November 12, 2013.
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Analysis (concluded)

There are O(| 2| +n?) calls to the algorithm for TSP (D).
Each call has an input length of O(| z |).

So if TSP (D) can be solved in polynomial time, so can
TSP.

Hence TSP (D) and TSP are equally hard (or easy).
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Randomized Computation
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I know that half my advertising works,
I just don’t know which half.
— John Wanamaker

I know that half my advertising is
a waste of money,

I just don’t know which half!

— McGraw-Hill ad.
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Randomized Algorithms?®
Randomized algorithms flip unbiased coins.

There are important problems for which there are no
known efficient deterministic algorithms but for which

very efficient randomized algorithms exist.

— Extraction of square roots, for instance.

There are problems where randomization is necessary.

— Secure protocols.

Randomized version can be more efficient.

— Parallel algorithm for maximal independent set.”

2Rabin (1976); Solovay and Strassen (1977).
b“Maximal” (a local maximum) not “maximum” (a global maximum).
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“Four Most Important Randomized Algorithms™?

1. Primality testing.®
2. Graph connectivity using random walks.¢
3. Polynomial identity testing.<

4. Algorithms for approximate counting.®

2Trevisan (2006).
PRabin (1976); Solovay and Strassen (1977).
¢Aleliunas, Karp, Lipton, Lovasz, and Rackoff (1979).

dSchwartz (1980); Zippel (1979).
®Sinclair and Jerrum (1989).
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