
Nondeterministic Space Complexity Classes

• Let L be a language.

• Then

L ∈ NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).

• NSPACE(f(n)) is a set of languages.

• As in the linear speedup theorem (Theorem 3 on p. 76),

constant coefficients do not matter.
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Graph Reachability

• Let G(V,E) be a directed graph (digraph).

• reachability asks if, given nodes a and b, does G

contain a path from a to b?

• Can be easily solved in polynomial time by breadth-first

search.

• How about its nondeterministic space complexity?
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The First Try: NSPACE(n log n)
1: Determine the number of nodes m; {Note m ≤ n.}
2: x1 := a; {Assume a ̸= b.}
3: for i = 2, 3, . . . ,m do

4: Guess xi ∈ {v1, v2, . . . , vm}; {The ith node.}
5: end for

6: for i = 2, 3, . . . ,m do

7: if (xi−1, xi) ̸∈ E then

8: “no”;

9: end if

10: if xi = b then

11: “yes”;

12: end if

13: end for

14: “no”;
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In Fact, reachability ∈ NSPACE(log n)
1: Determine the number of nodes m; {Note m ≤ n.}
2: x := a;

3: for i = 2, 3, . . . ,m do

4: Guess y ∈ {v1, v2, . . . , vm}; {The next node.}
5: if (x, y) ̸∈ E then

6: “no”;

7: end if

8: if y = b then

9: “yes”;

10: end if

11: x := y;

12: end for

13: “no”;
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Space Analysis

• Variables m, i, x, and y each require O(log n) bits.

• Testing (x, y) ∈ E is accomplished by consulting the

input string with counters of O(log n) bits long.

• Hence

reachability ∈ NSPACE(logn).

– reachability with more than one terminal node

also has the same complexity.

• reachability ∈ P (p. 214).
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Undecidability
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God exists since mathematics is consistent,

and the Devil exists since we cannot prove it.

— André Weil (1906–1998)

Whatsoever we imagine is finite.

Therefore there is no idea, or conception

of any thing we call infinite.

— Thomas Hobbes (1588–1679), Leviathan
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Infinite Sets

• A set is countable if it is finite or if it can be put in

one-one correspondence with N = { 0, 1, . . . }, the set of

natural numbers.

– Set of integers Z.
∗ 0 ↔ 0.

∗ 1 ↔ 1, 2 ↔ 3, 3 ↔ 5, . . ..

∗ −1 ↔ 2,−2 ↔ 4,−3 ↔ 6, . . ..

– Set of positive integers Z+: i ↔ i− 1.

– Set of positive odd integers: i ↔ (i− 1)/2.

– Set of (positive) rational numbers: See next page.

– Set of squared integers: i ↔
√
i .
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Rational Numbers Are Countable

5/2
5/1


1/5
1/2
1/1
 1/3
 1/4


2/1
 2/2
 2/3
 2/4


3/1
 3/2
 3/3
 3/4


4/1
 4/2
 4/3


1/6


2/5


6/1
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Cardinality

• For any set A, define |A| as A’s cardinality (size).

• Two sets are said to have the same cardinality, or

|A| = |B| or A ∼ B,

if there exists a one-to-one correspondence between their

elements.

• 2A denotes set A’s power set, that is {B : B ⊆ A}.
– E.g., { 0, 1 }’s power set is

2{ 0,1 } = { ∅, { 0 }, { 1 }, { 0, 1 } }.

• If |A| = k, then |2A| = 2k.
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Cardinality (concluded)

• Define |A| ≤ |B| if there is a one-to-one correspondence

between A and a subset of B’s.

• Obviously, if A ⊆ B, then |A| ≤ |B|.
– So |N | ≤ |Z |.
– So |N | ≤ |R |.

• Define |A| < |B| if |A| ≤ |B| but |A| ̸= |B|.

• If A ( B, then |A| < |B|?
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Cardinality and Infinite Sets

• If A and B are infinite sets, it is possible that A ( B yet

|A| = |B|.
– The set of integers properly contains the set of odd

integers.

– But the set of integers has the same cardinality as

the set of odd integers (p. 114).a

• A lot of “paradoxes.”

aLeibniz uses it to “prove” that there are no infinite numbers (Russell,

1914).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 118



Galileo’sa Paradox (1638)

• The squares of the positive integers can be placed in

one-to-one correspondence with all the positive integers.

• This is contrary to the axiom of Euclidb that the whole

is greater than any of its proper parts.c

• Resolution of paradoxes: Pick the notion that results in

“better” mathematics.

• The difference between a mathematical paradox and a

contradiction is often a matter of opinions.

aGalileo (1564–1642).
bEuclid (325 B.C.–265 B.C.).
cLeibniz never challenges that axiom (Knobloch, 1999).
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Hilbert’sa Paradox of the Grand Hotel

• For a hotel with a finite number of rooms with all the

rooms occupied, a new guest will be turned away.

• Now imagine a hotel with an infinite number of rooms,

all of which are occupied.

• A new guest comes and asks for a room.

• “But of course!” exclaims the proprietor.

• He moves the person previously occupying Room 1 to

Room 2, the person from Room 2 to Room 3, and so on.

• The new customer now occupies Room 1.

aDavid Hilbert (1862–1943).
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Hilbert’s Paradox of the Grand Hotel (concluded)

• Now imagine a hotel with an infinite number of rooms,

all taken up.

• An infinite number of new guests come in and ask for

rooms.

• “Certainly,” says the proprietor.

• He moves the occupant of Room 1 to Room 2, the

occupant of Room 2 to Room 4, and so on.

• Now all odd-numbered rooms become free and the

infinity of new guests can be accommodated in them.

• “There are many rooms in my Father’s house, and I am

going to prepare a place for you.” (John 14:3)
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David Hilbert (1862–1943)
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The point of philosophy is

to start with something so simple

as not to seem worth stating,

and to end with something

so paradoxical that no one will believe it.

— Bertrand Russell (1872–1970)
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Cantor’s Theorem

Theorem 6 The set of all subsets of N (2N) is infinite and

not countable.

• Suppose (2N) is countable with f : N → 2N being a

bijection.a

• Consider the set B = {k ∈ N : k ̸∈ f(k)} ⊆ N.

• Suppose B = f(n) for some n ∈ N.
aNote that f(k) is a subset of N.
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The Proof (concluded)

• If n ∈ f(n) = B, then n ∈ B, but then n ̸∈ B by B’s

definition.

• If n ̸∈ f(n) = B, then n ̸∈ B, but then n ∈ B by B’s

definition.

• Hence B ̸= f(n) for any n.

• f is not a bijection, a contradiction.
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Georg Cantor (1845–1918)

Kac and Ulam (1968), “[If] one

had to name a single person

whose work has had the most

decisive influence on the present

spirit of mathematics, it would

almost surely be Georg Cantor.”
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Cantor’s Diagonalization Argument Illustrated

f
(0)


f
(1)


f
(2)


f
(3)


f
(4)


f
(5)


B


0
 1
 2
 3
 4
 5
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A Corollary of Cantor’s Theorem

Corollary 7 For any set T , finite or infinite,

|T | < | 2T |.

• The inequality holds in the finite T case as k < 2k.

• Assume T is infinite now.

• To prove |T | ≤ |2T |, simply consider f(x) = {x} ∈ 2T .

– f maps a member of T = { a, b, c, . . . } to the

corresponding member of { { a }, { b }, { c }, . . . } ⊆ 2T .

• To prove the strict inequality |T | � |2T |, we use the

same argument as Cantor’s theorem.
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A Second Corollary of Cantor’s Theorem

Corollary 8 The set of all functions on N is not countable.

• It suffices to prove it for functions from N to {0, 1}.

• Every function f : N → {0, 1} determines a subset of N:

{n : f(n) = 1} ⊆ N,

and vice versa.

• So the set of functions from N to {0, 1} has cardinality

| 2N |.

• Cantor’s theorem (p. 124) then implies the claim.
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Existence of Uncomputable Problems

• Every program is a finite sequence of 0s and 1s, thus a

nonnegative integer.a

• Hence every program corresponds to some integer.

• The set of programs is countable.

aDifferent binary strings may be mapped to the same integer (e.g.,

“001” and “01”). To prevent it, use the lexicographic order as the map-

ping or simply insert “1” as the most significant bit of the binary string

before the mapping (so “001” becomes “1001”). Contributed by Mr.

Yu-Chih Tung (R98922167) on October 5, 2010.
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Existence of Uncomputable Problems (concluded)

• A function is a mapping from integers to integers.

• The set of functions is not countable by Corollary 8

(p. 129).

• So there are functions for which no programs exist.a

aAs a nondeterministic program may not compute a function, we

consider only deterministic programs for this sentence. Contributed by

Mr. Patrick Will (A99725101) on October 5, 2010.
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Universal Turing Machinea

• A universal Turing machine U interprets the input

as the description of a TM M concatenated with the

description of an input to that machine, x.

– Both M and x are over the alphabet of U .

• U simulates M on x so that

U(M ;x) = M(x).

• U is like a modern computer, which executes any valid

machine code, or a Java Virtual machine, which

executes any valid bytecode.

aTuring (1936).
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The Halting Problem

• Undecidable problems are problems that have no

algorithms.

• Equivalently, they are languages that are not recursive.

• We knew undecidable problems exist (p. 130).

• We now define a concrete undecidable problem, the

halting problem:

H = {M ;x : M(x) ̸=↗}.

– Does M halt on input x?
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H Is Recursively Enumerable

• Use the universal TM U to simulate M on x.

• When M is about to halt, U enters a “yes” state.

• If M(x) diverges, so does U .

• This TM accepts H.
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H Is Not Recursivea

• Suppose H is recursive.

• Then there is a TM MH that decides H.

• Consider the program D(M) that calls MH :

1: if MH(M ;M) = “yes” then

2: ↗; {Writing an infinite loop is easy.}
3: else

4: “yes”;

5: end if

aTuring (1936).
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H Is Not Recursive (concluded)

• Consider D(D):

– D(D) =↗⇒ MH(D;D) = “yes” ⇒ D;D ∈ H ⇒
D(D) ̸=↗, a contradiction.

– D(D) = “yes” ⇒ MH(D;D) = “no” ⇒ D;D ̸∈ H ⇒
D(D) =↗, a contradiction.
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Comments

• Two levels of interpretations of M :

– A sequence of 0s and 1s (data).

– An encoding of instructions (programs).

• There are no paradoxes with D(D).

– Concepts should be familiar to computer scientists.

– Feed a C compiler to a C compiler, a Lisp interpreter

to a Lisp interpreter, a sorting program to a sorting

program, etc.
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Cantor’s Paradox (1899a)

• Let T be the set of all sets.b

• Then 2T ⊆ T because 2T is a set.

• But we knowc | 2T | > |T | (p. 128)!

• We got a “contradiction.”

• Are we willing to give up Cantor’s theorem?

• If not, what is a set?

aIn a letter to Richard Dedekind. First published in Russell (1903).
bRecall this ontological argument for the existence of God by

St Anselm (1033–1109) in the 11th century: If something is possible

but is not part of God, then God is not the greatest possible object of

thought, a contradiction.
cReally?
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Self-Loop Paradoxesa

Russell’s Paradox (1901): Consider R = {A : A ̸∈ A}.
• If R ∈ R, then R ̸∈ R by definition.

• If R ̸∈ R, then R ∈ R also by definition.

• In either case, we have a “contradiction.”b

Eubulides: The Cretan says, “All Cretans are liars.”

Liar’s Paradox: “This sentence is false.”

Hypochondriac: a patient (like Gödel) with imaginary

symptoms and ailments.
aE.g., Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid

(1979) or Quine, The Ways of Paradox and Other Essays (1966).
bGottlob Frege (1848–1925) to Bertrand Russell in 1902, “Your dis-

covery of the contradiction [· · · ] has shaken the basis on which I intended

to build arithmetic.”
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Self-Loop Paradoxes (continued)

Sharon Stone in The Specialist (1994): “I’m not a

woman you can trust.”

Spin City (1996–2002): “I am not gay, but my boyfriend

is.”

Numbers 12:3, Old Testament: “Moses was the most

humble person in all the world [· · · ]” (attributed to

Moses).
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Self-Loop Paradoxes (concluded)

The Egyptian Book of the Dead: “ye live in me and I

would live in you.”

John 17:21, New Testament: “just as you are in me and

I am in you.”

Pagan & Christian Creeds (1920): “I was moved to

Odin, myself to myself.”

Soren Kierkegaard in Fear and Trembling (1843):

“to strive against the whole world is a comfort, to strive

with oneself is dreadful.”

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 141



Bertrand Russell (1872–1970)

Karl Popper (1974), “per-

haps the greatest philoso-

pher since Kant.”
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Reductions in Proving Undecidability

• Suppose we are asked to prove that L is undecidable.

• Suppose L′ (such as H) is known to be undecidable.

• Find a computable transformation R (called reduction)

from L′ to L such thata

∀x {x ∈ L′ if and only if R(x) ∈ L}.

• Now we can answer “x ∈ L′?” for any x by asking

“R(x) ∈ L?” because they have the same answer.

– L′ is said to be reduced to L.

aContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.
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Reductions in Proving Undecidability (concluded)

• If L were decidable, “R(x) ∈ L?” becomes computable

and we have an algorithm to decide L′, a contradiction!

• So L must be undecidable.

Theorem 9 Suppose language L1 can be reduced to

language L2. If L1 is not recursive, then L2 is not recursive.
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More Undecidability

• H∗ = {M : M halts on all inputs}.
– We will reduce H to H∗.

– Given the question “M ;x ∈ H?”, construct the

following machine (this is the reduction):a

Mx(y) {M(x); }

– M halts on x if and only if Mx halts on all inputs.

– In other words, M ;x ∈ H if and only if Mx ∈ H∗.

– So if H∗ were recursive, H would be recursive, a

contradiction.
aSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.

Mx ignores its input y; x is part of Mx’s code but not Mx’s input.
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More Undecidability (concluded)

• {M ;x : there is a y such that M(x) = y}.

• {M ;x : the computation M on input x uses all states of M}.

• {M ;x; y : M(x) = y}.
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Complements of Recursive Languages

The complement of L, denoted by L̄, is the language

Σ∗ − L.

Lemma 10 If L is recursive, then so is L̄.

• Let L be decided by M , which is deterministic.

• Swap the “yes” state and the “no” state of M .

• The new machine decides L̄.
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Recursive and Recursively Enumerable Languages

Lemma 11 (Kleene’s theorem) L is recursive if and

only if both L and L̄ are recursively enumerable.

• Suppose both L and L̄ are recursively enumerable,

accepted by M and M̄ , respectively.

• Simulate M and M̄ in an interleaved fashion.

• If M accepts, then halt on state “yes” because x ∈ L.

• If M̄ accepts, then halt on state “no” because x ̸∈ L.

• Note that either M or M̄ (but not both) must accept

the input.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 148



A Very Useful Corollary and Its Consequences

Corollary 12 L is recursively enumerable but not recursive,

then L̄ is not recursively enumerable.

• Suppose L̄ is recursively enumerable.

• Then both L and L̄ are recursively enumerable.

• By Lemma 11 (p. 148), L is recursive, a contradiction.

Corollary 13 H̄ is not recursively enumerable.a

aRecall that H̄ = {M ;x : M(x) =↗}.
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are

recursively enumerable.

R: The set of all recursive languages.

• Note that coRE is not RE.

– coRE = {L : L ∈ RE }.
– RE = {L : L ̸∈ RE }.
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R, RE, and coRE (concluded)

• R = RE ∩ coRE (p. 148).

• There exist languages in RE but not in R and not in

coRE.

– Such as H (p. 134, p. 135, and p. 149).

• There are languages in coRE but not in RE.

– Such as H̄ (p. 149).

• There are languages in neither RE nor coRE.
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Undecidability in Logic and Mathematics

• First-order logic is undecidable (answer to Hilbert’s

“Entscheidungsproblem” (1928)).a

• Natural numbers with addition and multiplication is

undecidable.b

• Rational numbers with addition and multiplication is

undecidable.c

aChurch (1936).
bRosser (1937).
cRobinson (1948).
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Undecidability in Logic and Mathematics (concluded)

• Natural numbers with addition and equality is decidable

and complete.a

• Elementary theory of groups is undecidable.b

aPresburger’s Master’s thesis (1928), his only work in logic. The

direction was suggested by Tarski. Mojz̄esz Presburger (1904–1943) died

in a concentration camp during World War II.
bTarski (1949).
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Julia Hall Bowman Robinson (1919–1985)
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Alfred Tarski (1901–1983)

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 156


