
Theory of Computation

Final-Term Examination on January 8, 2013

Fall Semester, 2012

Notes: You may use any results proved in the class unless stated otherwise.

Recall:

• RP: If L ∈ RP, then there exists a randomized polynomial-time TM

M such that:

– if x ∈ L, then at least half of the computation paths of M on x

halt with “yes”;

– if x /∈ L, then all computation paths halt with “no.”

• BPP: If L ∈ BPP, then there exists a randomized polynomial-time

TM M such that:

– If x ∈ L, then at least 3/4 of the computation paths of M on x

lead to “yes”;

– If x /∈ L, then at least 3/4 of the computation paths of M on x

lead to “no.”

• IP: If L ∈ IP, then there exists an interactive proof system (P, V )

such that the prover runs in exponential time and the verifier runs in

probabilistic polynomial time and:

– If x ∈ L, then the probability that x is accepted by the verifier is

at least 1− 2−|x|.

– If x /∈ L, then the probability that x is accepted by the verifier

with any prover replacing the original prover is at most 2−|x|.

Note that the number of rounds and the lengths of the messages are

both polynomials in |x|. You can assume V sends out the first message.



Problem 1 (25 points) Prove (a)RP⊆BPP and (b)BPP⊆PSPACE.

Ans:

(a) Let M be a randomized polynomial-time TM that recognizes L ∈ RP

with one-sided error-probability ϵ. Assuming ϵ ≤ 1/4 does not affect

RP (recall the slide on pp. 540). Thus the same TM M also recognizes

L with two-sided error-probability ϵ.

(b) LetM be a randomized polynomial-time TM that recognizes L ∈BPP

with two-sided error-probability ϵ ≤ 1/4. Let r(n) be the number of

coin tosses of M . Then the following TM decides L:

Count of the number s of accepting paths.

If s ≥ (1− ϵ)2r(n), then accept; otherwise, reject.

By reusing space across executions of the loop in counting the number

of accepting paths, this can be implemented in polynomial space.

Problem 2 (25 points) Please compute the Jacobi symbol (1003/1151).

You need to write down the calculations instead of merely giving the answer.

(Hint: Let p and q be two odd numbers (not necessarily primes). The law of

quadratic reciprocity says (p|q)(q|p) = (−1)
p−1
2

q−1
2 .)

Ans:

(1003/1151) = (−1)
1003−1

2
1151−1

2 (1151/1003)

= −(1151/1003)

= −(148/1003) = −(4/1003)× (37/1003)

= −(37/1003) = −(−1)
37−1

2
1003−1

2 (1003/37)

= −(1003/37)

= −(4/37) = −(2/37)× (2/37)

= −(−1)
372−1

8 × (−1)
372−1

8

= −1.



Problem 3 (25 points) Define IP∗ as IP except that the prover now runs

in (deterministic) polynomial space instead of exponential time. Show that

IP∗ ⊆ PSPACE. (You cannot use the known fact IP = PSPACE.)



Ans: Let L ∈ IP∗, (P, V ) be an interactive proof system, V be a proba-

bilistic polynomial-time verifier, P be a polynomial-space prover, c and k

be some positive integers, n be the length of the input, mi ∈ {0, 1}∗ be

ACCEPT/REJECT or the message sent in round i, and r ∈ {0, 1}nk
be the

random bit string in each round (for brevity, we had assumed r is of the same

length in each round). Assume P and V interact for at most nc rounds, and

V accepts or rejects the input before or at round nc. Construct deterministic

TM M to simulate (P, V ) as follows. Assume without loss of generality that

V sends the first message. In the algorithm, t is the total number of choices

for the random bits generated by V up to round i, and a is the number of

choices for which V accepts up to round i. On any input x, M computes a

and t recursively as follows by calling Γ(x, 1):

Algorithm (x, i,mi, . . . ,mi−1)

1: (a, t) = (0, 0);

2: if i = nc then

3: for all r ∈ {0, 1}nk
do

4: if V (x, i,m1,m2, . . . ,mi−1, r) = ACCEPT then

5: a = a+ 1;

6: end if

7: end for

8: return (a, 2n
k
);

9: else

10: for all r ∈ {0, 1}nk
do

11: mi = V (x, i,m1, . . . ,mi−1, r);

12: if mi = ACCEPT then

13: (a, t) = (a+ 1, t+ 1);

14: else if mi = REJECT then

15: (a, t) = (a, t+ 1);

16: else

17: mi+1 = P (x, i+ 1,m1, . . . ,mi);

18: (a, t) = (a, t) + Γ(x, i+ 2,m1, . . . ,mi+1);

19: end if

20: end for

21: return (a, t);

22: end if

Let s = a
t
. If s ≥ 2/3, then M accepts x; otherwise, M rejects x.

This algorithm performs in polynomial space. So M decides L in polynomial

space.



Problem 4 (25 points) Prove that there is no ϵ-approximation algorithm

for 6-COLORING if ϵ <1/7 and assuming P ̸= NP. (Hint: Recall that an

ϵ-approximation algorithm F guarantees that

OPT ≤ c(F (G)) ≤ OPT
1−ϵ

where c(F (G)) is the number of colors the polynomial-time algorithm F uses

to color G. What is the quality of the coloring scheme if you color the input

graph using the alleged ϵ-approximation algorithm?)

Ans: We prove the problem by contradiction. We assume that there exists

an ϵ-approximation algorithm F that colors the graph G in polynomial time.

Given ϵ <1/7, F will color G with at most x = OPT
1−ϵ

= 6 in polynomial

time if G is 6-colorable. That is, F can decide the answer ”YES” or ”NO”

to NP-complete problem 6-coloring in polynomial time. However, we know

that it is impossible to solve an NP-complete problem in polynomial time if

P ̸=NP.


