BPP’s Circuit Complexity

Theorem 73 (Adleman (1978)) All languages in BPP

have polynomaal circuits.

e Our proof will be nonconstructive in that only the
existence of the desired circuits is shown.

— Recall our proof of Theorem 15 (p. 186).

— Something exists if its probability of existence is

NONZero.
e It is not known how to efficiently generate circuit C),.

e In fact, if the construction of C,, can be made efficient,
then P = BPP, an unlikely result.
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The Proof

Let L € BPP be decided by a precise polynomial-time
NTM N by clear majority.

We shall prove that L has polynomial circuits Cy, (1, .. ..

— These circuits cannot make mistakes.

Suppose N runs in time p(n), where p(n) is a

polynomial.

Let A, = {a1,as,...,a,}, where a; € {0,1}P(").

Each a; € A,, represents a sequence of nondeterministic

choices (i.e., a computation path) for N.

Pick m = 12(n 4+ 1).
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The Proof (continued)

Let x be an input with |z | = n.

Circuit C,, simulates N on x with each sequence of
choices in A,, and then takes the majority of the m

outcomes.?

As N with a; is a polynomial-time deterministic TM, it

can be simulated by polynomial circuits of size O(p(n)?).

— See the proof of Proposition 71 (p. 564).
The size of C,, is therefore O(mp(n)?) = O(np(n)?).

— This is a polynomial.

2As m is even, there may be no clear majority. Still, the probability
of that happening is very small and does not materially affect our general
conclusion. Thanks to a lively class discussion on December 14, 2010.
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The Circuit

Majority logic
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The Proof (continued)

We now prove the existence of an A, making C,, correct
on all n-bit inputs.

Call a; bad if it leads N to an error (a false positive or a
false negative).

Select A,, uniformly randomly.

For each x € {0,1}", 1/4 of the computations of N are

€erroneous.

Because the sequences in A,, are chosen randomly and
independently, the expected number of bad a;’s is m /4.2

2So the proof will not work for NP. Contributed by Mr. Ching-Hua
Yu (D00921025) on December 11, 2012.
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The Proof (continued)
By the Chernoff bound (p. 546), the probability that the

number of bad a;’s is m/2 or more is at most

e—m/12 < 2—(n+1) .

The error probability of using majority rule is thus

< 2=(n*+1) for each = € {0,1}".

The probability that there is an x such that A,, results

in an incorrect answer is < 272~ (n+1) — 9—1

— prob[AUBU---] < prob[A]+ prob|B]|+---

Note that each A,, yields a circuit.
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The Proof (concluded)

We just showed that at least half of them are correct.

So with probability > 0.5, a random A,, produces a
correct C,, for all inputs of length n.

Because this probability exceeds 0, an A,, that makes

majority vote work for all inputs of length n exists.
Hence a correct C,, exists.?

e We have used the probabilistic method.P

2Quine (1948), “To be is to be the value of a bound variable.”
PThe proof is a counting argument phrased in the probabilistic lan-
guage.
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Leonard Adleman?® (1945-)

2Turing Award (2002).
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Cryptography
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Whoever wishes to keep a secret

must hide the fact that he possesses one.
— Johann Wolfgang von Goethe (1749-1832)

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 580



Cryptography

e Alice (A) wants to send a message to Bob (B) over a

channel monitored by Eve (eavesdropper).

e The protocol should be such that the message is known
only to Alice and Bob.

e The art and science of keeping messages secure is

cryptography.
Eve
Alice > Bob
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Encryption and Decryption

Alice and Bob agree on two algorithms £ and D—the
encryption and the decryption algorithms.

Both F/ and D are known to the public in the analysis.
Alice runs F/ and wants to send a message x to Bob.
Bob operates D.

Privacy is assured in terms of two numbers e, d, the
encryption and decryption keys.

Alice sends y = E(e, z) to Bob, who then performs
D(d,y) = = to recover .

e 1 is called plaintext, and y is called ciphertext.?

aBoth “zero” and “cipher” come from the same Arab word.
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Some Requirements

e D should be an inverse of E given e and d.

e D and E must both run in (probabilistic) polynomial

time.

e Eve should not be able to recover x from y without
knowing d.
— As D is public, d must be kept secret.

— e may or may not be a secret.
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Degrees of Security

e Perfect secrecy: After a ciphertext is intercepted by
the enemy, the a posteriori probabilities of the plaintext
that this ciphertext represents are identical to the a
priori probabilities of the same plaintext before the

interception.

— The probability that plaintext P occurs is
independent of the ciphertext C being observed.

— So knowing C yields no advantage in recovering P.
e Such systems are said to be informationally secure.

e A system is computationally secure if breaking it is

theoretically possible but computationally infeasible.
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Conditions for Perfect Secrecy?

e Consider a cryptosystem where:
— The space of ciphertext is as large as that of keys.
— Every plaintext has a nonzero probability of being
used.
e It is perfectly secure if and only if the following hold.
— A key is chosen with uniform distribution.

— For each plaintext = and ciphertext y, there exists a

unique key e such that F(e,z) = y.

2Shannon (1949).
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The One-Time Pad?

. Alice generates a random string r as long as x;

. Alice sends r to Bob over a secret channel;

. Alice sends x @ r to Bob over a public channel;
. Bob receives y;

: Bob recovers x := y & r;

*Mauborgne and Vernam (1917); Shannon (1949). It was allegedly

used for the hotline between Russia and U.S.
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Analysis

The one-time pad uses e =d = r.
This is said to be a private-key cryptosystem.
Knowing x and knowing r are equivalent.

Because r is random and private, the one-time pad

achieves perfect secrecy (see also p. 585).

The random bit string must be new for each round of
communication.
— Cryptographically strong pseudorandom

generators require exchanging only the seed once.

The assumption of a private channel is problematic.
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Public-Key Cryptography?

Suppose only d is private to Bob, whereas e is public

knowledge.

Bob generates the (e, d) pair and publishes e.
Anybody like Alice can send E(e, ) to Bob.
Knowing d, Bob can recover x by D(d, E(e,z)) = x.

The assumptions are complexity-theoretic.
— It is computationally difficult to compute d from e.

— It is computationally difficult to compute x from y

without knowing d.

2Diffie and Hellman (1976).
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Whitfield Diffie (1944-)
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Martin Hellman (1945-)
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Complexity Issues

Given y and z, it is easy to verify whether E(e, x) = y.
Hence one can always guess an x and verify.
Cracking a public-key cryptosystem is thus in NP.

A necessary condition for the existence of secure

public-key cryptosystems is P # NP.
But more is needed than P # NP.

For instance, it is not sufficient that D is hard to

compute in the worst case.

It should be hard in “most” or “average” cases.
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One-Way Functions
A function f is a one-way function if the following hold.?

1. f is one-to-one.

2. For all z € 2%, |z |V/* < |f(x)| < |2 |F for some k > 0.

e f is said to be honest.
3. f can be computed in polynomial time.

4. f~! cannot be computed in polynomial time.

e Exhaustive search works, but it must be slow.

2Diffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann
and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe
(1985); Young (1983).
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Existence of One-Way Functions

e Even if P £ NP, there is no guarantee that one-way

functions exist.
e No functions have been proved to be one-way.

e Is breaking glass a one-way function?
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Candidates of One-Way Functions

e Modular exponentiation f(x) = ¢ mod p, where ¢ is a

primitive root of p.

— Discrete logarithm is hard.?

e The RSAP function f(x) = x° mod pq for an odd e

relatively prime to ¢(pq).
— Breaking the RSA function is hard.

2Conjectured to be 27" for some € > 0 in both the worst-case sense
and average sense. It is in NP in some sense (Grollmann and Selman

(1988)).
PRivest, Shamir, and Adleman (1978).
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Candidates of One-Way Functions (concluded)

e Modular squaring f(z) = 2% mod pq.

— Determining if a number with a Jacobi symbol 1 is a
quadratic residue is hard—the quadratic

residuacity assumption (QRA).?

2Due to Gauss.
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The RSA Function

e Let p,q be two distinct primes.

The RSA function is ¢ mod pq for an odd e relatively
prime to ¢(pq).
— By Lemma 52 (p. 429),

¢(pq) = pg (1—1) (1—1) =pg—p—q+1. (14)

p q

e As ged(e, ¢(pq)) = 1, there is a d such that
ed = 1 mod ¢(pq),

which can be found by the Euclidean algorithm.?

aOne can think of d as e~ 1.
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A Public-Key Cryptosystem Based on RSA

Bob generates p and q.

Bob publishes pg and the encryption key e, a number

relatively prime to ¢(pq).

— The encryption function is y = x° mod pq.

— Bob calculates ¢(pq) by Eq. (14) (p. 596).

— Bob then calculates d such that ed = 1+ k¢(pq) for
some k € Z.

The decryption function is y¢ mod pg.

It works because y¢ = 2% = ! tk¢(P9) = x mod pq by
the Fermat-Euler theorem when ged(z,pq) = 1 (p. 439).
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The “Security” of the RSA Function

e Factoring pq or calculating d from (e, pq) seems hard.

— See also p. 435.

e Breaking the last bit of RSA is as hard as breaking the
RSA.?

e Recommended RSA key sizes:P

— 1024 bits up to 2010.
— 2048 bits up to 2030.
— 3072 bits up to 2031 and beyond.

2 Alexi, Chor, Goldreich, and Schnorr (1988).
PRSA (2003).
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The “Security” of the RSA Function (concluded)

Recall that problem A is “harder than” problem B if
solving A results in solving B.

— Factorization is “harder than” breaking the RSA.

— It is not hard to show that calculating Euler’s phi
function is “harder than” breaking the RSA.

— Factorization is “harder than” calculating Euler’s phi

function (see Lemma 52 on p. 429).

— So factorization is harder than calculating Euler’s phi
function, which is harder than breaking the RSA.

e Factorization cannot be NP-hard unless NP = coNP.?

e So breaking the RSA is unlikely to imply P = NP.
2Brassard (1979).
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Adi Shamir, Ron Rivest, and Leonard Adleman
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Ron Rivest® (1947-)

2Turing Award (2002).
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Adi Shamir® (1952-)
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2Turing Award (2002).
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The Secret-Key Agreement Problem

Exchanging messages securely using a private-key
cryptosystem requires Alice and Bob possessing the
same key (p. 587).

How can they agree on the same secret key when the

channel is insecure?
This is called the secret-key agreement problem.

It was solved by Diffie and Hellman (1976) using

one-way functions.
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The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive

root g of p; {p and g are public.}

. Alice chooses a large number a at random:;

. Alice computes a = g% mod p;

: Bob chooses a large number b at random;

. Bob computes 8 = ¢° mod p;

. Alice sends a to Bob, and Bob sends 8 to Alice;

. Alice computes her key 5% mod p;

. Bob computes his key a® mod p;
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Analysis

The keys computed by Alice and Bob are identical as

/BCL _ gba _ gab _ Oéb mod D.

To compute the common key from p, g, o, 8 is known as
the Diffie-Hellman problem.

It is conjectured to be hard.

If discrete logarithm is easy, then one can solve the
Diffie-Hellman problem.

— Because a and b can then be obtained by Eve.

But the other direction is still open.
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A Parallel History

e Diffie and Hellman’s solution to the secret-key

agreement problem led to public-key cryptography.

e At around the same time (or earlier) in Britain, the
RSA public-key cryptosystem was invented first before
the Diffie-Hellman secret-key agreement scheme was.

— Ellis, Cocks, and Williamson of the Communications
Electronics Security Group of the British Government
Communications Head Quarters (GCHQ).
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Digital Signatures®

Alice wants to send Bob a signed document x.
The signature must unmistakably identifies the sender.

Both Alice and Bob have public and private keys
€Alicey EBob; dAli(367 dBob-

Every cryptosystem guarantees D(d, E(e,x)) = x.

Assume the cryptosystem also satisfies the commutative

property
E(e,D(d,x)) = D(d, E(e,x)).

— E.g., the RSA system satisfies it as (z%)¢ = (2°)%.

2Diffie and Hellman (1976).
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Digital Signatures Based on Public-Key Systems

e Alice signs x as
(CC, D(dAli067 CC))

e Bob receives (x,y) and verifies the signature by checking
E(eAIicea y) — E(eAlicea D(dAlice7 33)) — T
based on Eq. (15).

e The claim of authenticity is founded on the difficulty of
inverting Eajice Without knowing the key dajice.
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Probabilistic Encryption?

A deterministic cryptosystem can be broken if the
plaintext has a distribution that favors the “easy” cases.

The ability to forge signatures on even a vanishingly
small fraction of strings of some length is a security
weakness if those strings were the probable ones!

A scheme may also “leak” partial information.

— Parity of the plaintext, e.g.

The first solution to the problems of skewed distribution
and partial information was based on the QRA.

2Goldwasser and Micali (1982).
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Shafi Goldwasser (1958-)
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Silvio Micali (1954-)
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A Useful Lemma

Lemma 74 Let n = pq be a product of two distinct primes.

Then a number y € Z* is a quadratic residue modulo n if

and only if (y|p) = (ylq) = 1.

e The “only if” part:

— Let = be a solution to £ = y mod pg.

— Then z? = y mod p and z? = y mod ¢ also hold.

— Hence y is a quadratic modulo p and a quadratic
residue modulo g.
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The Proof (concluded)

e The “if” part:
— Let a# = y mod p and a3 = y mod q.

— Solve

r = a1 modp,

x as mod q,

for £ with the Chinese remainder theorem.

— As 22 = y mod p, 2° = y mod ¢, and ged(p, q) = 1,
2

we must have x° = y mod pq.
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The Jacobi Symbol and Quadratic Residuacity Test

e The Legendre symbol can be used as a test for quadratic
residuacity by Lemma 62 (p. 506).

Lemma 74 (p. 612) says this is not the case with the

Jacobi symbol in general.
Suppose n = pq is a product of two distinct primes.

A number y € Z* with Jacobi symbol (y|pg) = 1 may

be a quadratic nonresidue modulo n when

(ylp) = (y|q) = —1,

because (y|pq) = (y|p)(y|q)-
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The Setup

Bob publishes n = pq, a product of two distinct primes,
and a quadratic nonresidue y with Jacobi symbol 1.

Bob keeps secret the factorization of n.
Alice wants to send bit string b1bs - - - by, to Bob.

Alice encrypts the bits by choosing a random quadratic
residue modulo n if b; is 1 and a random quadratic
nonresidue (with Jacobi symbol 1) otherwise.

A sequence of residues and nonresidues are sent.

Knowing the factorization of n, Bob can efficiently test

quadratic residuacity and thus read the message.
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The Protocol for Alice
1: for:=1,2,...,k do
Pick r € Z; randomly;
if b, = 1 then
Send r? mod n; {Jacobi symbol is 1.}

Send r2y mod n; {Jacobi symbol is still 1.}
end if
end for

2:
3
4
5. else
6
7
8:
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The Protocol for Bob
. fort=1,2,...,k do
Receive r;
if (r|p)=1and (r|q) =1 then

b, :=1;
else
b; .= 0;
end if
. end for
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Semantic Security

This encryption scheme is probabilistic.

There are a large number of different encryptions of a

given message.

One is chosen at random by the sender to represent the

message.

This scheme is both polynomially secure and

semantically secure.
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