The Number of Witnesses to Compositeness

Theorem 67 (Solovay and Strassen (1977)) If N is an
odd composite, then (M|N) = MWN=1/2 mod N for at most
half of M € ®(N).

e By Lemma 66 (p. 526) there is at least one a € ®(V)

such that (a|N) # aN=1/2 mod N.

o Let B=1{by,ba,...,bi} C ®(N) be the set of all distinct
residues such that (b;|N) = bEN_l)/Q mod N.

e Let aB ={ab;mod N :i=1,2,...,k}.
e Clearly, aB C ®(N), too.
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The Proof (concluded)

e |aB| =k.
— ab; = ab; mod N implies N|a(b; — b;), which is
impossible because gcd(a, N) =1 and N > |b; — b;|.

e aB N B = () because

(abs) N2 = WD o (0| N (b N) = (abs| N).

e Combining the above two results, we know

Bl . 1Bl _ 5
¢(N) ~ |BUaB|
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if N is even but N # 2 then
return “N is composite”;
else if N = 2 then
return “N is a prime”;
end if
Pick M € {2,3,..., N — 1} randomly;
if gcd(M,N) > 1 then

return “N is composite”;

1:
2:
3:
4.
5:
6:
7
8:
9:

else
if (M|N)# MY =Y/2 mod N then

return “/N is composite”;

—_ =
)

else

—_ =

return “N is a prime”;
end if
: end if

_ =
oo
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Analysis

The algorithm certainly runs in polynomial time.

There are no false positives (for COMPOSITENESS).

— When the algorithm says the number is composite, it
is always correct.

The probability of a false negative is at most one half.

— Suppose the input is composite.

— The probability that the algorithm says the number
is a prime is < 0.5 by Theorem 67 (p. 533).

So it is a Monte Carlo algorithm for COMPOSITENESS.
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The Improved Density Attack for COMPOSITENESS

Withesses to

compositeness of | Witnesses to
N via common compositeness of

factor N via Jacobi
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Randomized Complexity Classes; RP

e Let NV be a polynomial-time precise NTM that runs in
time p(n) and has 2 nondeterministic choices at each

step.
e N is a polynomial Monte Carlo Turing machine
for a language L if the following conditions hold:

— If x € L, then at least half of the 2P(™) computation
paths of V on x halt with “yes” where n = |z |.

— If z ¢ L, then all computation paths halt with “no.”

e The class of all languages with polynomial Monte Carlo

TMs is denoted RP (randomized polynomial time).?

2Adleman and Manders (1977).
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Comments on RP

e In analogy to Proposition 35 (p. 296), a “yes” instance

of an RP problem has many certificates (witnesses).

e There are no false positives.

e If we associate nondeterministic steps with flipping fair
coins, then we can cast RP in the language of
probability:.
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Comments on RP (concluded)

e The probability of false negatives is € < 0.5.

e But any constant between 0 and 1 can replace 0.5.

— Repeat the algorithm k£ = [— 1052 -| times and answer

“yes” only if all runs answer “yes.”

— The probability of false negatives becomes €* < 0.5.

e In fact, € can be arbitrarily close to 1 as long as it is at

most 1 — 1/g(n) for some polynomial g(n).
B _logj‘l2 e — O(lie) — O(q(n))
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Where RP Fits

e P C RP C NP.

— A deterministic TM is like a Monte Carlo TM except
that all the coin flips are ignored.

— A Monte Carlo TM is an NTM with extra demands
on the number of accepting paths.

e COMPOSITENESS € RP;®* PRIMES € coRP;
PRIMES € RP.P

— In fact, PRIMES € P.¢

RP U coRP is an alternative “plausible” notion of

efficient computation.

2Rabin (1976) and Solovay and Strassen (1977).

bAdleman and Huang (1987).
¢Agrawal, Kayal, and Saxena (2002).
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/PP? (Zero Probabilistic Polynomial)
The class ZPP is defined as RP N coRP.

e A language in ZPP has two Monte Carlo algorithms, one
with no false positives and the other with no false

negatives.

e If we repeatedly run both Monte Carlo algorithms,

eventually one definite answer will come (unlike RP).

— A positive answer from the one without false

positives.

— A negative answer from the one without false

negatives.

aGill (1977).
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The ZPP Algorithm (Las Vegas)

1: {Suppose L € ZPP.}
2: {IV; has no false positives, and N5 has no false
negatives. }

while true do
if Ni(z) = “yes” then

end if
if No(z) = “no” then

3:
4
5: return “yes”;
6
7
8 return “no”;

9: end if
10: end while
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/PP (concluded)

e The expected running time for the correct answer to

emerge is polynomial.

— The probability that a run of the 2 algorithms does

not generate a definite answer is 0.5 (why?).

— Let p(n) be the running time of each run of the

while-loop.

— The expected running time for a definite answer is

Z 0.5%p(n) = 2p(n).

e Essentially, ZPP is the class of problems that can be
solved, without errors, in expected polynomial time.
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Large Deviations

Suppose you have a biased coin.

One side has probability 0.5 + € to appear and the other
0.5 — €, for some 0 < ¢ < 0.5.

But you do not know which is which.

How to decide which side is the more likely side—with
high confidence?

Answer: Flip the coin many times and pick the side that

appeared the most times.

Question: Can you quantify the confidence?
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The Chernoff Bound?®
Theorem 68 (Chernoff (1952)) Suppose x1,x3,...,2,

are independent random variables taking the values 1 and 0

with probabilities p and 1 — p, respectively. Let X = Z?’:l X;.
Then for all 0 <0 <1,

prob| X > (14+0)pn] < e~ 0" Pn/3,

e The probability that the deviate of a binomial
random variable from its expected value

E|X]|=FE Z:m] = pn

decreases exponentially with the deviation.

2Herman Chernoff (1923—). The bound is asymptotically optimal.
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The Proof

Let t be any positive real number.

Then

prob[ X > (1 + 0) pn] = prob[e!* > 1+ rn ],

Markov’s inequality (p. 484) generalized to real-valued
random variables says that

prob [ > kE[e"*]] < 1/k.

With k = et(H0)r /Bl etX ] we have

prob[ X > (1 +0)pn] < e 1O PnpretX
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The Proof (continued)

e Because X =Y " | x; and z;’s are independent,
E[e" ] = (E[e™ )" = [1+p(e' —1)]"
e Substituting, we obtain

prob[ X > (1 +0)pn] < e "I [14pe’ —1)]"

t
e—t(1—|—0) pnepn(e —1)

as (1 4+ a)™ < e for all a > 0.
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The Proof (concluded)

e With the choice of t = In(1 + 8), the above becomes

prob[ X > (1 + 6) pn] < eP[0-(1+0)In(140)]

e The exponent expands to —% + 0> _ % + ... for

6
0 <60 <1, which is less than

1 6
<o (-—-+7
<0*(-5+¢
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Power of the Majority Rule

From prob[ X < (1 — 6)pn] < e~ P"/2 (prove it):

Corollary 69 Ifp = (1/2) 4+ € for some 0 < e < 1/2, then

prob [ZZCZ < n/2] < g€ /2

i=1
e The textbook’s corollary to Lemma 11.9 seems incorrect.
e Our original problem (p. 545) hence demands, e.g.,

n ~ 1.4k/e? independent coin flips to guarantee making
an error with probability < 2% with the majority rule.
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BPP? (Bounded Probabilistic Polynomial)

e The class BPP contains all languages L for which there
is a precise polynomial-time NTM N such that:

— If x € L, then at least 3/4 of the computation paths

of N on x lead to “yes.”

— If x ¢ L, then at least 3/4 of the computation paths

of N on x lead to “no.”

e So N accepts or rejects by a clear majority.

aGill (1977).
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Magic 3/47
e The number 3/4 bounds the probability (ratio) of a

right answer away from 1/2.

e Any constant strictly between 1/2 and 1 can be used
without affecting the class BPP.
e In fact, as with RP,
1

T, b
2 q(n)

for any polynomial ¢(n) can be used in place of 3/4 (p.
540).
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The Majority Vote Algorithm

Suppose L is decided by N by majority (1/2) + e.
fori=1,2,...,2k+ 1 do

Run N on input x;
end for

if “yes” is the majority answer then

44 79

yes™
else

44 7

no”;
end if

1:
2:
3:
4:
5:
6:
7
8:
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Analysis

The running time remains polynomial, being 2k + 1

times N’s running time.

By Corollary 69 (p. 550), the probability of a false

. 2
answer is at most e~ € F.

By taking k = [ 2/€? ], the error probability is at most
1/4.

Recall that € can be any inverse polynomial, because k

remains polynomial in n.
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Aspects of BPP

BPP is the most comprehensive yet plausible notion of

efficient computation.

— If a problem is in BPP, we take it to mean that the

problem can be solved efficiently.

— In this aspect, BPP has effectively replaced P.

(RP UcoRP) C (NP U coNP).

(RP U coRP) C BPP.
Whether BPP C (NP U coNP) is unknown.
But it is unlikely that NP C BPP (see p. 571).
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coBPP

The definition of BPP is symmetric: acceptance by clear

majority and rejection by clear majority.

An algorithm for L € BPP becomes one for L by

reversing the answer.

So L € BPP and BPP C coBPP.
Similarly coBPP C BPP.

Hence BPP = coBPP.

This approach does not work for RP.?

20t did not work for NP either.

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 556



BPP and coBPP
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“The Good, the Bad, and the Ugly”
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Circuit Complexity

Circuit complexity is based on boolean circuits instead

of Turing machines.

A boolean circuit with n inputs computes a boolean
function of n variables.
By identifying true/1 with “yes” and false/0 with

no,” a boolean circuit with n inputs accepts certain
strings in { 0,1 }".

To relate circuits with an arbitrary language, we need

one circuit for each possible input length n.
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Formal Definitions
The size of a circuit is the number of gates in it.

A family of circuits is an infinite sequence
C = (Cy, C1,...) of boolean circuits, where C,, has n

boolean inputs.

For input = € {0,1}*, C|,| outputs 1 if and only if
x € L.

In other words,

C,, accepts L N{0,1}".
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Formal Definitions (concluded)

e [ C {0,1}* has polynomial circuits if there is a family

of circuits C such that:

— The size of C,, is at most p(n) for some fixed

polynomial p.

— (), accepts LN {0,1}™.
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Exponential Circuits Suffice for All Languages

e Theorem 15 (p. 186) implies that there are languages
that cannot be solved by circuits of size 2" /(2n).

e But exponential circuits can solve all problems,

decidable or otherwise.

Proposition 70 All decision problems (decidable or

otherwise) can be solved by a circuit of size 22,

e We will show that for any language L C {0, 1}%,
LN {0,1}" can be decided by a circuit of size 272,
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The Proof (concluded)
Define boolean function f : {0,1}"™ — {0, 1}, where

1 xi290---xy € L,

f(gjlxz . ajn) ]
0 ziz0--2, & L.

flriza - xpn) = (x1 A f(lxa---xp)) V (mx1 A f(Ox2 - xp)).

The circuit size s(n) for f(x1x2---x,) hence satisfies
s(n) =4+ 2s(n—1)

with s(1) = 1.

Solve it to obtain s(n) =5 x 2"~ — 4 < 27+2,
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The Circuit Complexity of P

Proposition 71 All languages in P have polynomaial

circults.

e Let L € P be decided by a TM in time p(n).

e By Corollary 32 (p. 282), there is a circuit with
O(p(n)?) gates that accepts L N {0,1}".

e The size of the circuit depends only on L and the length
of the input.

e The size of the circuit is polynomial in n.
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Polynomial Circuits vs. P

e Is the converse of Proposition 71 true?

— Do polynomial circuits accept only languages in P?
e No.

e Polynomial circuits can accept undecidable languages!
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Languages That Polynomial Circuits Accept

Let L C {0,1}* be an undecidable language.

Let U = {1™ : the binary expansion of n is in L}.?
— For example, 111117 € U if 1015 € L.

U is also undecidable.

U N {1}" can be accepted by the trivial circuit C,, that
outputs 1 if 1* € U and outputs 0 if 1" ¢ U.P

e The family of circuits (Cy, C1,...) is polynomial in size.

2 Assume n’s leading bit is always 1 without loss of generality.
PWe may not know which is the case for general n.

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 566



A Patch

e Despite the simplicity of a circuit, the previous
discussions imply the following;:

— Circuits are not a realistic model of computation.
— Polynomial circuits are not a plausible notion of

efficient computation.

e What is missing?

e The effective and efficient constructibility of

Co,C1,. ...
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Uniformity

e A family (Cy,Cq,...) of circuits is uniform if there is a
log n-space bounded TM which on input 1™ outputs C,,.

— Note that n is the length of the input to C,.

— (Circuits now cannot accept undecidable languages
(why?).
— The circuit family on p. 566 is not constructible by a

single Turing machine (algorithm).

e A language has uniformly polynomial circuits if
there is a uniform family of polynomial circuits that
decide it.
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Uniformly Polynomial Circuits and P

Theorem 72 L € P if and only if L has uniformly

polynomial circuits.
e One direction was proved in Proposition 71 (p. 564).
e Now suppose L has uniformly polynomial circuits.

e A TM decides x € L in polynomial time as follows:

— Calculate n = |z |.
— Generate (), in logn space, hence polynomial time.

— Evaluate the circuit with input z in polynomial time.

e Therefore L € P.

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 569



Relation to P vs. NP

e Theorem 72 implies that P £ NP if and only if
NP-complete problems have no uniformly polynomial

circuits.

e A stronger conjecture: NP-complete problems have no

polynomial circuits, uniformly or not.

e The above is currently the preferred approach to proving
the P # NP conjecture—without success so far.
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