Reductions and Completeness
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It is unworthy of excellent men

to lose hours like slaves in the labor of

computation.
— Gottfried Wilhelm von Leibniz (1646-1716)
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Degrees of Difficulty

e When is a problem more difficult than another?
e B reduces to A if there is a transformation R which for
every input x of B yields an input R(x) of A.?

— The answer to x for B is the same as the answer to

R(x) for A.

— R is easy to compute.

e We say problem A is at least as hard as problem B if B
reduces to A.

aSee also p. 143.
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Degrees of Difficulty (concluded)

e This makes intuitive sense: If A is able to solve your

problem B after only a little bit of work of R, then A
must be at least as hard.

— If A is easy to solve, it combined with R (which is
also easy) would make B easy to solve, too.?

— So if B is hard to solve, A must be hard (if not
harder) as well.

@Thanks to a lively class discussion on October 13, 2009.
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Reduction

. algorithm

Solving problem B by calling the algorithm for problem A

once and without further processing its answer.
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Comments?
Suppose B reduces to A via a transformation R.
The input z is an instance of B.

The output R(x) is an instance of A.

R(x) may not span all possible instances of A.P

— Some instances of A may never appear in the range
of R.

2Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.
P R(x) may not be onto; Mr. Alexandr Simak (D98922040) on October

13, 20009.
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Reduction between Languages

e Language L, is reducible to L, if there is a function R
computable by a deterministic TM in space O(logn).

e Furthermore, for all inputs x, x € L, if and only if
R(CC) € Lo.

e R is said to be a (Karp) reduction from L, to Ls.
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Reduction between Languages (concluded)

e Note that by Theorem 23 (p. 214), R runs in polynomial

time.

— In most cases, a polynomial-time R suffices for proofs.
e Suppose R is a reduction from L to Ls.

e Then solving “R(x) € L2?” is an algorithm for solving
“:E E Ll?”a

2But it may not be an optimal one.
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A Paradox?

Degree of difficulty is not defined in terms of absolute

complexity.

So a language B € TIME(n°?) may be “easier” than a
language A € TIME(n?).

— This happens when B is reducible to A.

But is this a contradiction if the best algorithm for B
requires n”? steps?

That is, how can a problem requiring n”? steps be
reducible to a problem solvable in n° steps?
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Paradox Resolved
e The so-called contradiction does not hold.

e Suppose we solve the problem “x € B?” via “R(x) € A?”

e We must consider the time spent by R(z) and its length
| R(x) | because R(x) (not x) is presented to A.
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HAMILTONIAN PATH

A Hamiltonian path of a graph is a path that visits
every node of the graph exactly once.

Suppose graph G has n nodes: 1,2,...,n.

A Hamiltonian path can be expressed as a permutation

mof {1,2,...,n} such that

— (%) = j means the ith position is occupied by node j.

— (r(@),7(i+1)eGfori=1,2,...,n—1.

HAMILTONIAN PATH asks if a graph has a Hamiltonian
path.
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Reduction of HAMILTONIAN PATH to SAT

e Given a graph G, we shall construct a CNF R(G) such
that R(G) is satisfiable iff G has a Hamiltonian path.

e R(G) has n? boolean variables z;;, 1 <i,5 < n.

® IT;; Ineans

“the 7th position in the Hamiltonian path is

occupied by node j.”

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 242



©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 243



The Clauses of R(G) and Their Intended Meanings

1. Each node 5 must appear in the path.

® T1; Vxo; V-V, for each j.

. No node j appears twice in the path.
o —x;; Vxki(= —(xij Axgy)) for all 4, 5, k with 7 # k.

. Every position ¢ on the path must be occupied.

e ;1 VxioV---Vx; for each 7.

. No two nodes j and k occupy the same position in the path.
o —x;; V —I£C¢k<E —|(a:ij VAN xzk)) for all 7, 7, k with j # k.

. Nonadjacent nodes 7 and 7 cannot be adjacent in the path.

o —rp; V xpy1, forall (4i,5) Gand k=1,2,...,n—1.
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The Proof

R(G) contains O(n?) clauses.

R(G) can be computed efficiently (simple exercise).
Suppose T' = R(G).

From the 1st and 2nd types of clauses, for each node j

there is a unique position ¢ such that 7' = z;;.

From the 3rd and 4th types of clauses, for each position

i there is a unique node j such that 7' = z;;.

So there is a permutation 7 of the nodes such that

m(i) = j if and only if T |= z;;.
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The Proof (concluded)

e The 5th type of clauses furthermore guarantee that
(w(1),7(2),...,m(n)) is a Hamiltonian path.

e Conversely, suppose G has a Hamiltonian path

where 7 is a permutation.

e Clearly, the truth assignment
T(z;;) = true if and only if 7(i) = j

satisfies all clauses of R(G).
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A Comment?

e An answer to “Is R(G) satisfiable?” does answer “Is G

Hamiltonian?”

e But a positive answer does not give a Hamiltonian path

for GG.

— Providing a witness is not a requirement of reduction.

e A positive answer to “Is R(G) satisfiable?” plus a

satisfying truth assignment does provide us with a

Hamiltonian path for G.

2Contributed by Ms. Amy Liu (J94922016) on May 29, 2006.
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Reduction of REACHABILITY to CIRCUIT VALUE
e Note that both problems are in P.

e Given a graph G = (V, E), we shall construct a
variable-free circuit R(G).

e The output of R(G) is true if and only if there is a path
from node 1 to node n in G.

e Idea: the Floyd-Warshall algorithm.
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The Gates
The gates are
— gijr With 1 < 4,5 <nand 0 <k <n.
— hijr with 1 <4,75,k <n.

gijk: There is a path from node 7 to node j without
passing through a node bigger than k.

hi;k: There is a path from node ¢ to node j passing
through k& but not any node bigger than k.

Input gate g;;0 = true if and only if i = j or (¢,5) € E.
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The Construction

hiji 1s an AND gate with predecessors g; 1. x—1 and
9k, jk—1, Where k =1,2,...,n.

gijk 1s an OR gate with predecessors g; j x—1 and h; j g,

where k =1,2,...,n.
Jinn 18 the output gate.

Interestingly, R(G) uses no — gates.

— It is a monotone circuit.
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Reduction of CIRCUIT SAT to SAT
Given a circuit C', we will construct a boolean
expression R(C') such that R(C) is satisfiable iff C' is.
— R(C) will turn out to be a CNF.
— R(C) is a depth-2 circuit; furthermore, each gate has

out-degree 1.

The variables of R(C) are those of C' plus g for each
gate g of C.

— The g’s propagate the truth values for the CNF.
Each gate of C' will be turned into equivalent clauses.

Recall that clauses are Aed together by definition.
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The Clauses of R(C)

g is a variable gate x: Add clauses (—g V x) and (g V —x).
e Meaning: g & .

g is a true gate: Add clause (g).
e Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (—g).
e Meaning: g must be false to make R(C') true.

g is a — gate with predecessor gate h: Add clauses
(—g VvV —h) and (g V h).

e Meaning: g & —h.
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The Clauses of R(C') (concluded)

g is a V gate with predecessor gates h and h': Add
clauses (=h V g), (-h' V g), and (h V ' V —g).

e Meaning: g < (hV H').
g is a N gate with predecessor gates h and h': Add
clauses (mg V h), (—gV h'), and (=h V =h' V g).
e Meaning: g < (h A R).
g is the output gate: Add clause (g).
e Meaning: g must be true to make R(C) true.

Note: If gate g feeds gates hq, ho, ..., then variable g
appears in the clauses for hi, ho,... in R(C).
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An Example

(hl = 5131) VAN (hg — 5132) A\ (hg = 373) A (h4 — 584)

(g1 (ha Ah2) [ A[ge & (h3V hy)]
(93 < (1 AN g2) | A (94 & —g2)
(g5 < (93 V g4) | A gs.
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An Example (concluded)

In general, the result is a CNF.

The CNF has size proportional to the circuit’s number

of gates.

The CNF adds new variables to the circuit’s original

input variables.

Had we used the idea on p. 184 for the reduction, the
resulting formula may have an exponential length

because of the copying.?

2Contributed by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.
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Composition of Reductions

Proposition 26 If Ri5 is a reduction from Ly to Lo and
Ro3 is a reduction from Lo to L3, then the composition

R15 0 Ro3 is a reduction from Ly to Ls.

e So reducibility is transitive.
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Completeness®

As reducibility is transitive, problems can be ordered
with respect to their difficulty.

Is there a mazimal element?

It is not obvious that there should be a maximal

element.
— Many infinite structures (such as integers and real

numbers) do not have maximal elements.

Hence it may surprise you that most of the complexity

classes that we have seen so far have maximal elements.

2Cook (1971) and Levin (1973).
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Completeness (concluded)

e Let C be a complexity class and L € C.

e L is C-complete if every L’ € C can be reduced to L.
— Most complexity classes we have seen so far have

complete problems!

e Complete problems capture the difficulty of a class
because they are the hardest problems in the class.
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Hardness

Let C be a complexity class.

L is C-hard if every L’ € C can be reduced to L.

It is not required that L € C.

If L is C-hard, then by definition, every C-complete

problem can be reduced to L.?

2Contributed by Mr. Ming-Feng Tsai (D92922003) on October 15,
2003.

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 259



lllustration of Completeness and Hardness
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Closedness under Reductions

e A class C is closed under reductions if whenever L is

reducible to L' and L’ € C, then L € C.

e It is easy to show that P, NP, coNP, L, NL, PSPACE,

and EXP are all closed under reductions.
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Complete Problems and Complexity Classes

Proposition 27 Let C' and C be two complexity classes
such that C' C C. Assume C’ is closed under reductions and
L is C-complete. Then C =C' if and only if L € C'.

e Suppose L € C’ first.

e Every language A € C reduces to L € C'.

e Because C’ is closed under reductions, A € C’.
Hence C C C'.

As C’ C C, we conclude that C = C’.
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The Proof (concluded)

e On the other hand, suppose C = C’.
e As L is C-complete, L € C.

e Thus, trivially, L € C’.
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Two Important Corollaries

Proposition 27 implies the following.

Corollary 28 P = NP if and only if an NP-complete
problem in P.

Corollary 29 L = P if and only if a P-complete problem 1is
wn L.

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 264



Complete Problems and Complexity Classes

Proposition 30 Let C' and C be two complexity classes

closed under reductions. If L is complete for both C and C’,
then C = C'.

e All languages £ € C reduce to L € C'.
e Since C’ is closed under reductions, £ € C'.
e Hence C C (.

e The proof for C’ C C is symmetric.
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Table of Computation

Let M = (K, 3,4, s) be a single-string polynomial-time
deterministic TM deciding L.

Its computation on input x can be thought of as a
|2 |* x |2 |* table, where |z |¥ is the time bound.

— It is a sequence of configurations.

Rows correspond to time steps 0 to |z |¥ — 1.

Columns are positions in the string of M.

The (7, 7)th table entry represents the contents of
position j of the string after 7 steps of computation.
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Some Conventions To Simplify the Table
M halts after at most |z |¥ — 2 steps.

Assume a large enough k to make it true for |z | > 2.

Pad the table with | |s so that each row has length |z |*.

— The computation will never reach the right end of
the table for lack of time.

If the cursor scans the jth position at time ¢ when M is
at state ¢ and the symbol is o, then the (7, j)th entry is

a new symbol oy.
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Some Conventions To Simplify the Table (continued)

Y

o If g is “yes” or “no,” simply use “yes” or “no” instead of

Ogq-

Modify M so that the cursor starts not at > but at the
first symbol of the input.

The cursor never visits the leftmost > by telescoping
two moves of M each time the cursor is about to move
to the leftmost >.

So the first symbol in every row is a I> and not a >,.
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Some Conventions To Simplify the Table (concluded)

e Suppose M has halted before its time bound of |z |*, so
that “yes” or “no” appears at a row before the last.

e Then all subsequent rows will be identical to that row.

o M accepts z if and only if the (|z |¥ — 1, j)th entry is
“yes” for some position j.

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 269



Comments

e Each row is essentially a configuration.

e If the input x = 010001, then the first row is

k
| |

r>ogooo1|_||_|---|j

e A typical row may look like

k
|z |

i,

r>1o1ooq011101oo| | ||I
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Comments (concluded)

e The last rows must look like

s

N\

Ve

[> I “yes

,7 . . .

e Three out of the table’s 4 borders are known:

>abcdef L
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A P-Complete Problem

Theorem 31 (Ladner (1975)) CIRCUIT VALUE is
P-complete.

e It is easy to see that CIRCUIT VALUE € P.

For any L € P, we will construct a reduction R from L
to CIRCUIT VALUE.

Given any input z, R(x) is a variable-free circuit such
that = € L if and only if R(x) evaluates to true.

Let M decide L in time n”.

Let T' be the computation table of M on x.
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The Proof (continued)

e Wheni=0,0rj=0,or j=|x|¥—1, then the value of

T;; 1s known.
— The jth symbol of x or | |, a >, and a | |, respectively.

— Recall that three out of 1’s 4 borders are known.
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The Proof (continued)

Consider other entries Tj;.

Tij depends o1 only Ti—l,j—17 Ti—l,j7 and Ti—l,j-|-1:

Ti1j—1 | Tic1y | Ti-1,5+1
T,

Let I' denote the set of all symbols that can appear on
the table: ' =X U{o,:0 € ¥,q € K}.

Encode each symbol of I' as an m-bit number, where®

m = [logy [T'|].

2Called state assignment in circuit design.

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 274



The Proof (continued)

e Let the m-bit binary string S;;15:;2 - - - Sijm encode Tj;.
e We may treat them interchangeably without ambiguity.

e The computation table is now a table of binary entries
Sijg, where
0<i<nk-—1,
0<j<nF-1,
1</ <m.
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The Proof (continued)

e Each bit 5;;, depends on only 3m other bits:
Tic1j—1: Si—1-11 Si—1j-12 - Si—1j-1,m
Ti—1,: Si—1,4,1 Si—1,5,2 e Sic14m

Tio1,jv10 Sic1+11 Sicig412 0 Sicij+im

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 276



The Proof (continued)
e There is a boolean function Fy with 3m inputs such that

Sije

Ti 1,51
_/A\"

~

= Fu(Sic1-1.1,8i-1-12,- -, 5i-15—1.m;

Ti—1,

I\

~

S’i—l,j,l) Si—l,j,27 cee Si—l,j,ma

Ti—1,5+1

7\
r N\

Si—1,41,15Si—1,j4+1,25 - - - Si—1,j41,m)»

where for all 7,7 >0 and 1 </ < m.
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The Proof (continued)

These F;’s depend only on M’s specification, not on x.
Their sizes are constant.

These boolean functions can be turned into boolean

circuits (see p. 183).

Compose these m circuits in parallel to obtain circuit C'

with 3m-bit inputs and m-bit outputs.
— Schematically, C(Ti—l,j—laTi—l,jaTi—l,j—i—l) = Tij.a

aC' is like an ASIC (application-specific IC) chip.

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 278



Circuit C'

T T

11 Tiogg T

-1+ 1

AP
C

T |
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The Proof (concluded)

A copy of circuit C is placed at each entry of the table.

— Exceptions are the top row and the two extreme

column borders.
R(x) consists of (|z |¥ —1)(|z |¥ — 2) copies of circuit C.

Without loss of generality, assume the output

“yeS”/“HO” appear at position (| X |k — 1, 1)-

Encode “yes” as 1 and “no” as 0.
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The Computation Tableau and R(x)

abcdefl_l

St
[
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A Corollary

The construction in the above proof yields the following,
more general result.

Corollary 32 If L € TIME(T (n)), then a circuit with
O(T?(n)) gates can decide if v € L for |z | =n.
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