Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.

Theorem 4 Suppose language L is decided by an NTM N
in time f(n). Then it is decided by a 3-string deterministic
TM M in time O(cf™), where ¢ > 1 is some constant
depending on N.

e On input x, M goes down every computation path of N
using depth-first search.
— M does not need to know f(n).

— As N is time-bounded, the depth-first search will not
run indefinitely.
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The Proof (concluded)

e If any path leads to “yes,” then M immediately enters
the “yes” state.

e If none of the paths leads to “yes,” then M enters the
“no” state.

e The simulation takes time O(cf(™) for some ¢ > 1
because the computation tree has that many nodes.

Corollary 5 NTIME(f(n))) € U, , TIME(c/ (™).
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NTIME vs. TIME

e Does converting an NTM into a TM require exploring
all computation paths of the NTM as done in Theorem 4

(p. 97)7

e This is the most important question in theory with
important practical implications.
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A Nondeterministic Algorithm for Satisfiability

@ is a boolean formula with n variables.
1: for:=1,2,....,ndo

Guess z; € {0,1}; {Nondeterministic choice.}
end for
{Verification:}
if ¢(x1,22,...,2,) =1 then

“yes”;
else

“no”;
end if

2:
3:
4:
5:
6:
7
8:
9:
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Computation Tree for Satisfiability

[13 L2 N 11 &« b5 I 11 b2 N 19 b2 I 14 b5 BN 1 b2 I 1 [ 2N 13 "

N0 y&S N0 y&S ¥&S N0 N0 NO  YES
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Analysis

e The computation tree is a complete binary tree of depth

n.

e LEvery computation path corresponds to a particular

truth assignment out of 2.

e ¢ is satisfiable iff there is a truth assignment that
satisfies ¢.
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Analysis (concluded)

e The algorithm decides language {¢ : ¢ is satisfiable}.
— Suppose ¢ is satisfiable.
— That means there is a truth assignment that satisfies
0.
So there is a computation path that results in “yes.”
Suppose ¢ is not satisfiable.
That means every truth assignment makes ¢ false.

So every computation path results in “no.”

e General paradigm: Guess a “proof” and then verify it.
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The Traveling Salesman Problem

We are given n cities 1,2, ..., n and integer distance d;;

between any two cities ¢ and j.
Assume d;; = d;; for convenience.

The traveling salesman problem (TsP) asks for the

total distance of the shortest tour of the cities.

The decision version TSP (D) asks if there is a tour with

a total distance at most B, where B is an input.?

2Both problems are extremely important and are equally hard (p. 354
and p. 447).
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A Nondeterministic Algorithm for TSP (D)
for:=1,2,...,ndo
Guess z; € {1,2,...,n}; {The ith city.}*
end for
Tngl i= T1;
{Verification:}

if £1,22,..., 7, are distinct and Y | dy; 2;., < B then

“yeS” ;

else

CCnO” ;

end if

1:
2:
3:
4:
5:
6:
T
8:
9:

—_
<

2Can be made into a series of log, n binary choices for each x; so
that the next-state count (2) is a constant, independent of input size.
Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.
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Analysis

e Suppose the input graph contains at least one tour of

the cities with a total distance at most B.
e Then there is a computation path that leads to “yes.”?

e Suppose the input graph contains no tour of the cities

with a total distance at most B.

e Then every computation path leads to “no.”

@It does not mean the algorithm will follow that path. It just means

such a computation path exists.
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Remarks on the P = NP Open Problem?

e Many practical applications depend on answers to the
P = NP question.

e Verification of password is easy (so it is in NP).
— A computer should not take a long time to let a user

log in.

e A password system should be hard to crack (loosely

speaking, cracking it should not be in P).

2Contributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on
September 27, 2011.
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Nondeterministic Space Complexity Classes

Let L be a language.

Then
L € NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).
NSPACE(f(n)) is a set of languages.

As in the linear speedup theorem (Theorem 3 on p. 75),

constant coefficients do not matter.
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Graph Reachability

Let G(V, F) be a directed graph (digraph).

REACHABILITY asks if, given nodes a and b, does G
contain a path from a to b7

Can be easily solved in polynomial time by breadth-first
search.

How about its nondeterministic space complexity?
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The First Try: NSPACE(nlogn)
. 1 := a; {Assume a # b.}
. fort=2,3,...,ndo
Guess z; € {v1,v2,...,0,}; {The ith node.}
. end for
: fort=2,3,...,ndo
if (x;_1,%;) ¢ E then

CCnO” ;

end if
if z; = b then

44 2

yes
end if

. end for

. “no” :

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 110



In Fact, REACHABILITY € NSPACE(log n)
Iz = aq;
2: for 1 =2,3,...,ndo
3:  Guess y € {v1,va,...,v,}; {The next node.}

if (x,y) € E then

“IIO” ;

end if
if y = b then

44 79

yes;
end if

10: T =1,
11: end for

7

12: “no”;

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 111



Space Analysis

Variables i, x, and y each require O(logn) bits.

Testing (z,y) € E is accomplished by consulting the
input string with counters of O(logn) bits long.

Hence

REACHABILITY € NSPACE(logn).

— REACHABILITY with more than one terminal node
also has the same complexity.

REACHABILITY € P (p. 211).
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Undecidability
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God exists since mathematics is consistent,

and the Devil exists since we cannot prove it.
— André Weil (1906-1998)

Whatsoever we imagine is finite.
Therefore there is no idea, or conception

of any thing we call infinite.
— Thomas Hobbes (1588-1679), Leviathan
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Infinite Sets

e A set is countable if it is finite or if it can be put in
one-one correspondence with N ={0,1,...}, the set of
natural numbers.

— Set of integers Z.

x 0 < 0.
x 11,2 3,3 9,....
x —14>2, -2 4,-36,....

Set of positive integers Z7: 7 <+ 1 — 1.
Set of positive odd integers: @ <» (i — 1)/2.

Set of (positive) rational numbers: See next page.

Set of squared integers: i <> V/i.
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Rational Numbers Are Countable

1H—
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Cardinality
For any set A, define |A| as A’s cardinality (size).
Two sets are said to have the same cardinality, or
|A|=1|B| or A~ B,

if there exists a one-to-one correspondence between their

elements.

24 denotes set A’s power set, that is {B: B C A}.

— E.g., {0,1}’s power set is
20013 = (0,{0},{1},{0,1} )
If |A| = k, then 24| = 2F.
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Cardinality (concluded)

Define |A| < |B] if there is a one-to-one correspondence

between A and a subset of B’s.
Obviously, if A C B, then |A| < |B.
— So |N| < |Z].

— So |[N| < |R].

Define |A| < |B] if |A| < |B| but |A| # |Bj|.
If AC B, then |A| < |B|?
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Cardinality and Infinite Sets

e If A and B are infinite sets, it is possible that A C B yet
Al = |B|.
— The set of integers properly contains the set of odd
integers.
— But the set of integers has the same cardinality as

the set of odd integers (p. 115).2

e A lot of “paradoxes.”

2Leibniz uses it to “prove” that there are no infinite numbers (Russell,
1914).
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Galileo’s* Paradox (1638)

The squares of the positive integers can be placed in
one-to-one correspondence with all the positive integers.

This is contrary to the axiom of Euclid® that the whole

is greater than any of its proper parts.©

Resolution of paradoxes: Pick the notion that results in

“better” mathematics.

The difference between a mathematical paradox and a

contradiction is often a matter of opinions.

2Galileo (1564-1642).

PEuclid (325 B.C.-265 B.C.).
©Leibniz never challenges that axiom (Knobloch, 1999).
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Hilbert's® Paradox of the Grand Hotel

For a hotel with a finite number of rooms with all the

rooms occupied, a new guest will be turned away.

Now imagine a hotel with an infinite number of rooms,

all of which are occupied.

A new guest comes and asks for a room.

“But of course!” exclaims the proprietor.

He moves the person previously occupying Room 1 to
Room 2, the person from Room 2 to Room 3, and so on.

e The new customer now occupies Room 1.

2David Hilbert (1862-1943).
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Hilbert's Paradox of the Grand Hotel (concluded)

Now imagine a hotel with an infinite number of rooms,

all taken up.

An infinite number of new guests come in and ask for

rooms.
“Certainly,” says the proprietor.

He moves the occupant of Room 1 to Room 2, the

occupant of Room 2 to Room 4, and so on.

Now all odd-numbered rooms become free and the

infinity of new guests can be accommodated in them.

“There are many rooms in my Father’s house, and I am
going to prepare a place for you.” (John 14:3)
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David Hilbert (1862-1943)
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Cantor's Theorem

Theorem 6 The set of all subsets of N (2V) is infinite and

not countable.

e Suppose (2V) is countable with f : N — 2N being a

bijection.?
e Consider theset B={keN: k¢ f(k)} CN.

e Suppose B = f(n) for some n € N.

2Note that f(k) is a subset of N.
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The Proof (concluded)

If n € f(n) = B, then n € B, but then n ¢ B by B’s
definition.

If n¢ f(n) =B, then n ¢ B, but then n € B by B’s
definition.

Hence B # f(n) for any n.

f is not a bijection, a contradiction.
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Georg Cantor (1845-1918)

Kac and Ulam (1968), “[If] one
had to name a single person
whose work has had the most
decisive influence on the present
spirit of mathematics, it would

almost surely be Georg Cantor.”
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Cantor's Diagonalization Argument lllustrated
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A Corollary of Cantor’s Theorem

Corollary 7 For any set T', finite or infinite,

T <|2"].

The inequality holds in the finite T case as k < 2.
Assume T is infinite now.

To prove | T'| < |21, simply consider f(z) = {x} € 27.

— f maps a member of T'={a,b,c,...} to a
corresponding member of { {a},{b},{c},...} C 2T,

To prove the strict inequality |T'| < |21, we use the

same argument as Cantor’s theorem.
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A Second Corollary of Cantor’s Theorem

Corollary 8 The set of all functions on N is not countable.
e It suffices to prove it for functions from N to {0,1}.

e Every function f: N — {0,1} determines a subset of N:
{n:f(n)zl}ng
and vice versa.

e So the set of functions from N to {0, 1} has cardinality
2% .

e Cantor’s theorem (p. 124) then implies the claim.
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Existence of Uncomputable Problems

e Every program is a finite sequence of Os and 1s, thus a

nonnegative integer.®

e Hence every program corresponds to some integer.

e The set of programs is countable.

aDifferent binary strings may be mapped to the same integer (e.g.,
“001” and “01”). To prevent it, use the lexicographic order as the map-
ping or simply insert “1” as the most significant bit of the binary string
before the mapping (so “001” becomes “1001”). Contributed by Mr.
Yu-Chih Tung (R98922167) on October 5, 2010.
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Existence of Uncomputable Problems (concluded)

e A function is a mapping from integers to integers.

e The set of functions is not countable by Corollary 8
(p. 129).

e So there are functions for which no programs exist.?

2As a nondeterministic program may not compute a function, we

consider only deterministic programs for this sentence. Contributed by
Mr. Patrick Will (A99725101) on October 5, 2010.
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Universal Turing Machine?

e A universal Turing machine U interprets the input
as the description of a TM M concatenated with the

description of an input to that machine, x.

— Both M and z are over the alphabet of U.

e U simulates M on x so that
UM;z) = M(x).

e U is like a modern computer, which executes any valid
machine code, or a Java Virtual machine, which

executes any valid bytecode.

2Turing (1936).
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The Halting Problem

Undecidable problems are problems that have no

algorithms.
Equivalently, they are languages that are not recursive.
We knew undecidable problems exist (p. 130).

We now define a concrete undecidable problem, the

halting problem:
H={M;z: M(z) #}.

— Does M halt on input z?
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H Is Recursively Enumerable

Use the universal TM U to simulate M on x.
When M is about to halt, U enters a “yes” state.
If M(x) diverges, so does U.

This TM accepts H.
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