Recursively Enumerable Languages: Examples

- The set of C program-input pairs that do not run into an infinite loop is recursively enumerable.
 - Just run its binary code in a simulator environment.

- The set of C programs that contain an infinite loop is not recursively enumerable (see p. 134).
Turing-Computable Functions

• Let $f : (\Sigma - \{\bot\})^* \rightarrow \Sigma^*$.

 – Optimization problems, root finding problems, etc.

• Let M be a TM with alphabet Σ.

• M computes f if for any string $x \in (\Sigma - \{\bot\})^*$,

 $M(x) = f(x)$.

• We call f a recursive function\(^a\) if such an M exists.

\(^a\)Kurt Gödel (1931, 1934).
Kurt Gödela (1906–1978)

Quine (1978), “this theorem [...] sealed his immortality.”

aThis photo was taken by Alfred Eisenstaedt (1898–1995).
Church’s Thesis or the Church-Turing Thesis

- What is computable is Turing-computable; TMs are algorithms.\(^a\)

- No “intuitively computable” problems have been shown not to be Turing-computable, yet.

\(^a\)Church (1936); Kleene (1953).
Church’s Thesis or the Church-Turing Thesis (concluded)

• Many other computation models have been proposed.
 – Recursive function (Gödel), \(\lambda \) calculus (Church), formal language (Post), assembly language-like RAM (Shepherdson & Sturgis), boolean circuits (Shannon), extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.

• All have been proved to be equivalent.
Alonso Church (1903–1995)
Stephen Kleene (1909–1994)
Extended Church’s Thesisa

- All “reasonably succinct encodings” of problems are \textit{polynomially related} (e.g., n^2 vs. n^6).
 - Representations of a graph as an adjacency matrix and as a linked list are both succinct.
 - The \textit{unary} representation of numbers is not succinct.
 - The \textit{binary} representation of numbers is succinct.
 * 1001 vs. 111111111.

- All numbers for TMs will be binary from now on.

aSome call it “polynomial Church’s thesis,” which Lószló Lovász attributed to Leonid Levin.
Extended Church’s Thesis (concluded)

• Representations that are not succinct may give misleadingly low complexities.
 – Consider an algorithm with binary inputs that runs in 2^n steps.
 – If the input uses unary representation, the same algorithm runs in linear time!

• So a succinct representation is for honest accounting.
Physical Church-Turing Thesis

- “[Church’s thesis] is a profound claim about the physical laws of our universe, i.e.: any physical system that purports to be a ‘computer’ is not capable of any computational task that a Turing machine is incapable of.”\(^a\)

- “Anything computable in physics can also be computed on a Turing machine.”\(^b\)

- The universe is a Turing machine.\(^c\)

\(^a\)Warren Smith (1998).
\(^b\)Cooper (2012).
\(^c\)Edward Fredkin’s (1992) digital physics.
Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- K, Σ, s are as before.
- $\delta : K \times \Sigma^k \rightarrow (K \cup \{h, \text{“yes”}, \text{“no”}\}) \times (\Sigma \times \{←, →, −\})^k$.
- All strings start with a \triangleright.
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is the last (kth) string.
A 2-String TM

δ

1001100011100111001110

111110000

111110000

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University
PALINDROME Revisited

• A 2-string TM can decide PALINDROME in $O(n)$ steps.
 – It copies the input to the second string.
 – The cursor of the first string is positioned at the first symbol of the input.
 – The cursor of the second string is positioned at the last symbol of the input.
 – The symbols under the cursors are then compared.
 – The two cursors are then moved in opposite directions until the ends are reached.
 – The machine accepts if and only if the symbols under the two cursors are identical at all steps.
PALINDROME Revisited (concluded)

- The running times of a 2-string TM and a single-string TM are quadratically related.
- This is consistent with extended Church’s thesis.
Configurations and Yielding

- The concept of configuration and yielding is the same as before except that a configuration is a \((2k + 1)\)-tuple

\[(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).\]

- \(w_i u_i\) is the \(i\)th string.
- The \(i\)th cursor is reading the last symbol of \(w_i\).
- Recall that \(\triangleright\) is each \(w_i\)'s first symbol.

- The \(k\)-string TM’s initial configuration is

\[
\left(s, \triangleright, x, \triangleright, \epsilon, \triangleright, \epsilon, \ldots, \triangleright, \epsilon \right).
\]
Time seemed to be the most obvious measure of complexity.

— Stephen Arthur Cook (1939–)
Time Complexity

• The multistring TM is the basis of our notion of the time expended by TMs.

• If a k-string TM M halts after t steps on input x, then the time required by M on input x is t.

• If $M(x) = \uparrow$, then the time required by M on x is ∞.

• Machine M operates within time $f(n)$ for $f : \mathbb{N} \rightarrow \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.

 – $|x|$ is the length of string x.

• Function $f(n)$ is a time bound for M.
Time Complexity Classes

- Suppose language $L \subseteq (\Sigma - \{\boxslash\})^*$ is decided by a multistring TM operating in time $f(n)$.
- We say $L \in \text{TIME}(f(n))$.
- $\text{TIME}(f(n))$ is the set of languages decided by TMs with multiple strings operating within time bound $f(n)$.
- $\text{TIME}(f(n))$ is a complexity class.
 - PALINDROME is in $\text{TIME}(f(n))$, where $f(n) = O(n)$.

Hartmanis and Stearns (1965); Hartmanis, Lewis, and Stearns (1965).
Juris Hartmanisa (1928–)

aTuring Award (1993).
Richard Edwin Stearnsa (1936–)

aTuring Award (1993).
The Simulation Technique

Theorem 2 Given any k-string M operating within time $f(n)$, there exists a (single-string) M' operating within time $O(f(n)^2)$ such that $M(x) = M'(x)$ for any input x.

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University
The Proof

- The single string of M' implements the k strings of M.
- Represent configuration $(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)$ of M by this string of M':

$$ (q, \triangleright w'_1 u_1 \triangleleft w'_2 u_2 \triangleleft \cdots \triangleleft w'_k u_k \triangleleft \triangleleft). $$

- \triangleleft is a special delimiter.
- w'_i is w_i with the first and last symbols “primed.”
- It serves the purpose of “,” in a configuration.

aThe first symbol is always \triangleright.
The Proof (continued)

• The “priming” of the last symbol of w_i ensures that M' knows which symbol is under each cursor of M.a

• The first symbol of w_i is the primed version of \triangleright: \triangleright'.
 – Recall TM cursors are not allowed to move to the left of \triangleright (p. 21).
 – Now the cursor of M' can move \textit{between} the simulated strings of M.b

aAdded because of comments made by Mr. Che-Wei Chang (R95922093) on September 27, 2006.
bThanks to a lively discussion on September 22, 2009.
The Proof (continued)

- The initial configuration of M' is

 \[
 (s, \triangleright\triangleright'' x \triangleleft\triangleleft'' \triangleleft \cdots \triangleleft'' \triangleleft \triangleleft).
 \]

 - \triangleright is double-primed because it is the beginning and the ending symbol as the cursor is reading it.\(^{\text{a}}\)

\(^{\text{a}}\)Added after the class discussion on September 20, 2011.
The Proof (continued)

- We simulate each move of M thus:
 1. M' scans the string to pick up the k symbols under the cursors.
 - The states of M' must be enlarged to include $K \times \Sigma^k$ to remember them.
 - The transition functions of M' must also reflect it.
 2. M' then changes the string to reflect the overwriting of symbols and cursor movements of M.
The Proof (continued)

• It is possible that some strings of M need to be lengthened (see next page).
 – The linear-time algorithm on p. 34 can be used for each such string.

• The simulation continues until M halts.

• M' then erases all strings of M except the last one.\(^a\)

\(^a\)Because whatever appears on the string of M' will be the output. So those \triangleright's and \triangleright'''s need to be removed.
The Proof (continued)

• Since M halts within time $f(|x|)$, none of its strings ever becomes longer than $f(|x|)$.\(^a\)

• The length of the string of M' at any time is $O(kf(|x|))$.

• Simulating each step of M takes, per string of M, $O(kf(|x|))$ steps.
 - $O(f(|x|))$ steps to collect information from this string.
 - $O(kf(|x|))$ steps to write and, if needed, to lengthen the string.

\(^a\)We tacitly assume $f(n) \geq n$.
The Proof (concluded)

- M' takes $O(k^2 f(|x|))$ steps to simulate each step of M because there are k strings.

- As there are $f(|x|)$ steps of M to simulate, M' operates within time $O(k^2 f(|x|)^2)$.
Linear Speedupa

\textbf{Theorem 3} Let $L \in \text{TIME}(f(n))$. Then for any $\epsilon > 0$, $L \in \text{TIME}(f'(n))$, where $f'(n) = \epsilon f(n) + n + 2$.

aHartmanis and Stearns (1965).
Implications of the Speedup Theorem

- State size can be traded for speed.\(^a\)

- If \(f(n) = cn \) with \(c > 1 \), then \(c \) can be made arbitrarily close to 1.

- If \(f(n) \) is superlinear, say \(f(n) = 14n^2 + 31n \), then the constant in the leading term (14 in this example) can be made arbitrarily small.

 - Arbitrary linear speedup can be achieved.\(^b\)

 - This justifies the big-O notation for the analysis of algorithms.

\(^a\)\(m^k \cdot |\Sigma|^{3mk}\)-fold increase to gain a speedup of \(O(m) \). No free lunch.

\(^b\)Can you apply the theorem multiple times to achieve superlinear speedup? Thanks to a question by a student on September 21, 2010.
By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^k for some $k \geq 1$.

- If L is a polynomially decidable language, it is in $\text{TIME}(n^k)$ for some $k \in \mathbb{N}$.
 - Clearly, $\text{TIME}(n^k) \subseteq \text{TIME}(n^{k+1})$.

- The union of all polynomially decidable languages is denoted by P:
 \[P = \bigcup_{k>0} \text{TIME}(n^k). \]

- P contains problems that can be efficiently solved.
Philosophers have explained space.
 They have not explained time.
 — Arnold Bennett (1867–1931),
 How To Live on 24 Hours a Day (1910)

I keep bumping into that silly quotation
attributed to me that says
640K of memory is enough.
 — Bill Gates (1996)
Space Complexity

- Consider a k-string TM M with input x.
- Assume non-\bot is never written over by \bot.\(^a\)
 - The purpose is not to artificially reduce the space needs (see below).
- If M halts in configuration $(H, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)$, then the space required by M on input x is

\[
\sum_{i=1}^{k} |w_i u_i|.
\]

\(^a\)Corrected by Ms. Chuan-Ju Wang (R95922018, F95922018) on September 27, 2006.
Space Complexity (continued)

• Suppose we do not charge the space used only for input and output.

• Let $k > 2$ be an integer.

• A k-string Turing machine with input and output is a k-string TM that satisfies the following conditions.

 – The input string is read-only.

 – The last string, the output string, is write-only.

 – So the cursor never moves to the left.

 – The cursor of the input string does not wander off into the \(\sqcup \)s.
Space Complexity (concluded)

• If M is a TM with input and output, then the space required by M on input x is

$$\sum_{i=2}^{k-1} |w_i u_i|.$$

• Machine M operates within space bound $f(n)$ for $f : \mathbb{N} \rightarrow \mathbb{N}$ if for any input x, the space required by M on x is at most $f(|x|)$.
Space Complexity Classes

• Let L be a language.

• Then

\[L \in \text{SPACE}(f(n)) \]

if there is a TM with input and output that decides L and operates within space bound $f(n)$.

• \(\text{SPACE}(f(n)) \) is a set of languages.

 – \(\text{PALINDROME} \in \text{SPACE}(\log n) \).\(^a\)

• As in the linear speedup theorem (p. 75), constant coefficients do not matter.

\(^a\)Keep 3 counters.
Nondeterminism\(^a\)

- A nondeterministic Turing machine (NTM) is a quadruple \(N = (K, \Sigma, \Delta, s)\).

- \(K, \Sigma, s\) are as before.

- \(\Delta \subseteq K \times \Sigma \times (K \cup \{h, \text{“yes”}, \text{“no”}\}) \times \Sigma \times \{←, →, −\}\) is a relation, not a function.\(^b\)
 - For each state-symbol combination, there may be multiple valid next steps—or none at all.
 - Multiple lines of code may be applicable.

\(^a\)Rabin and Scott (1959).
\(^b\)Corrected by Mr. Jung-Ying Chen (D95723006) on September 23, 2008.
Nondeterminism (concluded)

• As before, a program contains lines of code:

\[(q_1, \sigma_1, p_1, \rho_1, D_1) \in \Delta,\]
\[(q_2, \sigma_2, p_2, \rho_2, D_2) \in \Delta,\]
\[\vdots\]
\[(q_n, \sigma_n, p_n, \rho_n, D_n) \in \Delta.\]

— In the deterministic case (p. 22), we wrote

\[\delta(q_i, \sigma_i) = (p_i, \rho_i, D_i).\]

• A configuration yields another configuration in one step if there exists a rule in \(\Delta\) that makes this happen.
Michael O. Rabina (1931–)

aTuring Award (1976).
Dana Stewart Scotta (1932–)

aTuring Award (1976).
Computation Tree and Computation Path

\[s \]

\[h \]

\[\text{“no”} \]

\[h \]

\[\text{“yes”} \]

\[\text{“yes”} \]
Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any $x \in \Sigma^*$, $x \in L$ if and only if there is a sequence of valid configurations that ends in “yes.”
- In other words,
 - If $x \in L$, then $M(x) = “yes”$ for some computation path.
 - If $x \notin L$, then $M(x) \neq “yes”$ for all computation paths.
Decidability under Nondeterminism (concluded)

- It is not required that the NTM halts in all computation paths.\(^a\)

- If \(x \notin L\), no nondeterministic choices should lead to a “yes” state.

- The key is the algorithm’s *overall* behavior not whether it gives a correct answer for each particular run.

- Determinism is a special case of nondeterminism.

\(^a\)So “accepts” is a more proper term, and other books use “decides” only when the NTM always halts.
An Example

• Let L be the set of logical conclusions of a set of axioms.
 – Predicates not in L may be false under the axioms.
 – They may also be independent of the axioms.
 * That is, they can be assumed true or false without contradicting the axioms.
An Example (concluded)

• Let \(\phi \) be a predicate whose validity we would like to prove.

• Consider the nondeterministic algorithm:
 1: \(b := \text{true}; \)
 2: while the input predicate \(\phi \neq b \) do
 3: Generate a logical conclusion of \(b \) by applying one of the axioms; \{Nondeterministic choice.\}
 4: Assign this conclusion to \(b \);
 5: end while
 6: “yes”;

• This algorithm decides \(L \).
Complementing a TM’s Halting States

• Let M decide L, and M' be M after “yes” \leftrightarrow “no”.

• If M is a deterministic TM, then M' decides \overline{L}.

• But if M is an NTM, then M' may not decide \overline{L}.
 – It is possible that both M and M' accept x (see next page).
 – So M and M' accept languages that are not complements of each other.
Time Complexity under Nondeterminism

• Nondeterministic machine N decides L in time $f(n)$, where $f : \mathbb{N} \rightarrow \mathbb{N}$, if
 - N decides L, and
 - for any $x \in \Sigma^*$, N does not have a computation path longer than $f(|x|)$.

• We charge only the “depth” of the computation tree.
Time Complexity Classes under Nondeterminism

- $\text{NTIME}(f(n))$ is the set of languages decided by NTMs within time $f(n)$.
- $\text{NTIME}(f(n))$ is a complexity class.
NP

• Define

\[NP = \bigcup_{k>0} \text{NTIME}(n^k). \]

• Clearly \(P \subseteq NP \).

• Think of \(NP \) as efficiently \textit{verifiable} problems (see p. 293).

 - Boolean satisfiability (p. 100 and p. 170).

• The most important open problem in computer science is whether \(P = NP \).