Problem 1 (25 points). Prove that L is NP-complete if and only if its complement \bar{L} is coNP-complete.

Solution.

⇒ Let L be an NP-complete language; thus $L \in \text{NP}$. For all $L' \in \text{NP}$, let R be a reduction form L' to L. Problem instance $x \in L' \iff R(x) \in L$. Equivalently, $x \notin L' \iff R(x) \notin L$ (the law of transposition). So $x \in \bar{L}' \iff R(x) \in \bar{L}$. R is a reduction from \bar{L}' to \bar{L}. Hence \bar{L} is coNP-complete.

⇐ Let \bar{L} be a coNP-complete language; thus $\bar{L} \in \text{coNP}$. For all $\bar{L}' \in \text{coNP}$, let R be a reduction form \bar{L}' to \bar{L}. Problem instance $x \in \bar{L}' \iff R(x) \in \bar{L}$. Equivalently, $x \notin \bar{L}' \iff R(x) \notin \bar{L}$ (the law of transposition). So $x \in L' \iff R(x) \in L$. R is a reduction from L' to L. Hence L is NP-complete.

Problem 2 (25 points). The Jacobi symbol $(a \mid m)$ is the extension of the Legendre symbol $(a \mid p)$, where p is an odd prime, and

$$(a \mid p) = \begin{cases} 0 & \text{if } (p \mid a), \\ 1 & \text{if } a \text{ is a quadratic residue module } p, \\ -1 & \text{if } a \text{ is a quadratic nonresidue module } p. \end{cases}$$

Recall that when $m > 1$ is odd and gcd $(a, m) = 1$, then $(a \mid m) = \prod_{i=1}^{k} (a \mid p_i)$.

Please calculate $(1234 \mid 99)$. Please write down the steps leading to your answer.
Solution.

\[(1234 \mid 99) = (46 \mid 99) = (46 \mid 9) (46 \mid 11) = (1 \mid 9) (2 \mid 11) = 1 \cdot (-1)^{\frac{11^2 - 1}{8}} = (-1)^{15} = -1\]

\[\square\]

Problem 3 (25 points). Let \(\mu \equiv E[X]\) and \(\sigma^2 \equiv E[(X - \mu)^2]\) be finite. Show that

\[
\text{prob}[|X - \mu| \geq k\sigma] \leq 1/k^2
\]

for \(k \geq 0\).

(Hints: The Markov inequality says: \(\text{prob}[Y \geq m] \leq E[Y]/m\) if random variable \(Y\) takes on only nonnegative values and \(m \geq 0\). Try \(Y = (X - \mu)^2\).)

Solution. Let \(Y = (X - \mu)^2\) and \(m = (k\sigma)^2\). Then

\[
\text{prob}[Y \geq m] \leq \frac{E[Y]}{m}
\]

\[
\iff \text{prob}[(X - \mu)^2 \geq (k\sigma)^2] \leq \frac{\sigma^2}{(k\sigma)^2}
\]

\[
\iff \text{prob}[\sqrt{(X - \mu)^2} \geq \sqrt{(k\sigma)^2}] \leq \frac{b^2}{k^2\beta^2}
\]

\[
\iff \text{prob}[|X - \mu| \geq k\sigma] \leq \frac{1}{k^2}
\]

The last line is due to Markov’s inequality because \((X - \mu)^2\) is a nonnegative value and \((k\sigma)^2 \geq 0\).

\[\square\]

Problem 4 (25 points). Please define RP and prove that RP \(\subseteq\) NP.

Solution. RP is the class of all languages \(L\) with a (precise) polynomial-time Monte Carlo TM \(M\) such that

If \(x \in L\), then \(\text{Prob}[M(x) = \text{“Yes”}] \geq \frac{1}{2}\). \quad (1)

If \(x \notin L\), then \(\text{Prob}[M(x) = \text{“No”}] = 1\).

If \(L\) in RP and \(x \in L\), then there exists a sequence of coin flips \(f\) such that \(M\) accepts \(x\) with \(f\) as the nondeterministic choices by (1). If \(x \notin L\), the \(\text{Prob}[M(x) = \text{“Yes”}] = 0\). So \(M\) rejects \(x\). So \(L\) NP.