Theory of Computation ## Homework 5 Due: 2012/01/03 **Problem 1.** Show that if $NP \subseteq BPP$ then NP = RP. (Hints: It suffices to show $SAT \in RP$.) *Proof.* As RP ⊆ NP (see the slides), it suffices to show that NP ⊆ RP. We prove this claim by showing that if NP ⊆ BPP, then SAT ∈ RP. Let a formula ϕ with n variables $x_1, ..., x_n$, be the input. Note that ϕ is satisfiable iff there exists a truth assignment for $x_1, ..., x_n$ such that $\phi(x_1, ..., x_n) = 1$. Let A be a BPP algorithm with error probability at most 2^{-k} (see the slides pp. 526-528) for SAT, where $k = |\phi|$ is the length of the formula ϕ . Such an A exists because of the assumption that SAT ∈ BPP. We first run A on ϕ . If A rejects, we reject. Otherwise, we try to construct a satisfying assignment for ϕ one variable at a time. We initialize x_1 to 0, and then call A to determine if the resulting formula is satisfiable: if A returns "accept", then we permanently set x_1 to 0; otherwise, we set x_1 to 1. We then proceed with x_2 similarly. If we manage to construct a satisfying assignment at the end, then we verify this assignment for ϕ . If $\phi(x_1, ..., x_n) = 1$, then we accept; otherwise, we reject. Here is the analysis. If ϕ is unsatisfiable, then we always reject either because A rejects in the process or we do not arrive at a satisfying assignment at the end. On the other hand, suppose ϕ is satisfiable. We proceed to show that we accept with probability at least 1/2. We invoke A a total of n+1 times. If ϕ is satisfiable and A returns "accept" each time only for an assignment for variable x_i which is part of a satisfying assignment, then we end up with a satisfying assignment. We now show that the probability that at least one of the n+1 invocations returns "reject" for an assignment for variable x_i which is part of a satisfying assignment is at most 1/2. The probability that an invocation of A returns does so is at most 2^{-k} . So the probability that we encounter it is at most $(n+1)\cdot 2^{-k}$, which is at most 1/2 because $n+1 \le k$. Since both the algorithm A and the construction of satisfying assignment run in polynomial time, the whole procedure clearly runs in polynomial time. ## **Problem 2.** Show that BPP \subseteq PSPACE. *Proof.* Let M be a probabilistic TM that runs in polynomial time. We can modify M such that it makes exactly n^k coin tosses on each branch of its computation, for some constant k. Note that there are a total of $2^{(n^k)}$ computation paths. Hence, the problem of determining the probability that M accepts its input reduces to counting how many branches, B, are accepting and comparing this number with $P = (3/4) \cdot 2^{(n^k)}$. If $B \ge P$, then we accept; otherwise, we reject. This deterministic task can be performed in polynomial space by generating all possible paths sequentially following M's program but recycling the space used by the previous path.