Exponential Circuit Complexity for NP-Complete Problems

e We shall prove exponential lower bounds for

NP-complete problems using monotone circuits.

— Monotone circuits are circuits without — gates.

e Note that this does not settle the P vs. NP problem or
any of the conjectures on p. 544.
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The Power of Monotone Circuits

Monotone circuits can only compute monotone boolean

functions.

They are powerful enough to solve a P-complete
problem, MONOTONE CIRCUIT VALUE (p. 266).

There are NP-complete problems that are not monotone;

they cannot be computed by monotone circuits at all.

There are NP-complete problems that are monotone;

they can be computed by monotone circuits.

— HAMILTONIAN PATH and CLIQUE.
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CLIQUE,, 4

CLIQUE,, j, is the boolean function deciding whether a
graph G = (V, F) with n nodes has a clique of size k.

The input gates are the (g) entries of the adjacency

matrix of (.

— Gate g;; is set to true if the associated undirected

edge {1,j } exists.
CLIQUE,, j is a monotone function.

Thus it can be computed by a monotone circuit.
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Crude Circuits

e One possible circuit for CLIQUE,, ;, does the following.

1. For each S C V with |S| = k, there is a circuit with
O(k?) A-gates testing whether S forms a clique.

2. We then take an OR of the outcomes of all the (”)
subsets S7,.5,..., S(Z)

k

e This is a monotone circuit with O(k?(}})) gates, which is

exponentially large unless k or n — k is a constant.

e A crude circuit CC(Xq, Xo,..., X,,) tests if any of
X; CV forms a clique.
— The above-mentioned circuit is CC(Sy, So, .. ., S(
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The Proof: Positive Examples

Analysis will be applied to only positive examples and

negative examples as inputs.

A positive example is a graph that has (g) edges

connecting k nodes in all possible ways.
There are (7) such graphs.

They all should elicit a true output from CLIQUE,, k.
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The Proof: Negative Examples

e Color the nodes with k£ — 1 different colors and join by
an edge any two nodes that are colored differently.

e There are (k — 1)™ such graphs.

e They all should elicit a false output from CLIQUE,, .

— Each set of £ nodes must have 2 identically colored

nodes; hence there is no edge between them.
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Positive and Negative Examples with £ =5

A positive example A negative example
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Sunflowers

e FixpeZt and ¥ € Z™.

e A sunflower is a family of p sets { Py, P, ..., P,}, called

petals, each of cardinality at most £.

e Furthermore, all pairs of sets in the family must have
the same intersection (called the core of the sunflower).
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A Sample Sunflower

{{1,2,3,5},{1,2,6,9},{0,1,2,11},
{1,2,12,13},{1,2,8,10}, {1,2,4,7}}.
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The Erdos-Rado Lemma

Lemma 83 Let Z be a family of more than M = (p — 1)%/!
nonempty sets, each of cardinality ¢ or less. Then Z must

contain a sunflower (with p petals).

e Induction on /.

e For ¢ =1, p different singletons form a sunflower (with

an empty core).
e Suppose £ > 1.

e Consider a maximal subset D C Z of disjoint sets.

— Every set in Z2 — D intersects some set in D.
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The Proof of the Erdés-Rado Lemma (continued)

For example,

Z = {{1,2,3,5),{1,3,6,9},{0,4,8, 11},
(4,5,6,7},{5,8,9,10},{6,7,9,11}},
111,2,3,5),10,4,8,11}}.
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The Proof of the Erdés-Rado Lemma (continued)

e Suppose D contains at least p sets.

— D constitutes a sunflower with an empty core.

e Suppose D contains fewer than p sets.
Let C' be the union of all sets in D.
Cl<(-1L
(' intersects every set in Z by D’s maximality.

There is a d € C that intersects more than
ﬁ = (p—1)*1(£ —1)! sets in Z.
Consider Z/' ={Z —{d}: Z € Z,d € Z}.
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The Proof of the Erdés-Rado Lemma (concluded)

e (continued)
Z’ has more than M’ = (p — 1)*71(¢ — 1)! sets.
M’ is just M with ¢ replaced with ¢ — 1.

Z' contains a sunflower by induction, say
{P1, Ps,...,P,}.

Now,

(P, U{d}, P, U{d},..., P, U{d}}

is a sunflower in 2.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 704



Comments on the Erdés-Rado Lemma
A family of more than M sets must contain a sunflower.

Plucking a sunflower means replacing the sets in the

sunflower by its core.

By repeatedly finding a sunflower and plucking it, we can
reduce a family with more than M sets to a family with

at most M sets.

If Z is a family of sets, the above result is denoted by
pluck(Z2).

Note: pluck(Z) is not unique.
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An Example of Plucking

e Recall the sunflower on p. 700:

Z = {{1,2,3,5},{1,2,6,9},{0,1,2, 11},
{1,2,12,13},{1,2,8,10},{1,2,4,7}}

pluck(Z) = {{1,2}}.
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Razborov's Theorem

Theorem 84 (Razborov (1985)) There is a constant ¢

such that for large enough n, all monotone circuits for
CLIQUE,, j, with k = n'/% have size at least n"

1/8
e We shall approximate any monotone circuit for
CLIQUE,, ;, by a restricted kind of crude circuit.

e The approximation will proceed in steps: one step for

each gate of the monotone circuit.

e Each step introduces few errors (false positives and false

negatives).

e But the final crude circuit has exponentially many

EITOors.
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The Proof
Fix k = nl/4.
Fix ¢ = nl/8,

Note that?

2(y) <k -1
2

p will be fixed later to be n'/®logn.

Fix M = (p —1)%¢.
— Recall the Erdés-Rado lemma (p. 701).

2Corrected by Mr. Moustapha Bande (D98922042) on January 05,
2010.
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The Proof (continued)

Each crude circuit used in the approximation process is
of the form CC(X1, X5, ..., X,,), where:

— X; CV.
— | X;| < /L.
—m< M.

It answers true if any X is a clique.

We shall show how to approximate any circuit for
CLIQUE,, ;, by such a crude circuit, inductively.

The induction basis is straightforward:

— Input gate g;; is the crude circuit CC({%,j}).
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The Proof (continued)

e Any monotone circuit can be considered the OR or AND

of two subcircuits.

e We shall show how to build approximators of the overall
circuit from the approximators of the two subcircuits.

— We are given two crude circuits CC(X) and CC()).

— X and ) are two families of at most M sets of nodes,

each set containing at most ¢ nodes.

— We construct the approximate OR and the
approximate AND of these subcircuits.

— Then show both approximations introduce few errors.
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The Proof: ORrR

e CC(XUY) is equivalent to the OR of CC(X) and CC()).

— A set of nodes C € X U is a clique if and only if
C € X is a clique or C € ) is a clique.

e Violations in using CC(X UY) occur when |X' UY| > M.

e Such violations can be eliminated by using
CC(pluck(X UY))

as the approximate OR of CC(&X’) and CC()Y).
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The Proof: ORrR

o If CC(Z2) is true, then CC(pluck(Z)) must be true.
— The quick reason: If Y is a clique, then a subset of Y

must also be a clique.

— For each Y € X U ), there must exist at least one
X € pluck(X UY) such that X C Y.

— If Y is a clique, then this X is also a clique.

e We now bound the number of errors this approximate

OR makes on the positive and negative examples.
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The Proof: OR (concluded)

o CC(pluck(X UY)) introduces a false positive if a
negative example makes both CC(&X’) and CC()) return
false but makes CC(pluck(X U )Y)) return true.

o CC(pluck(X UY)) introduces a false negative if a
positive example makes either CC(X) or CC()) return
true but makes CC(pluck(X U Y)) return false.

e How many false positives and false negatives are
introduced by CC(pluck(X U Y))?
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The Number of False Positives

Lemma 85 CC(pluck(X UY)) introduces at most

p—]\—41 27P(k — 1)™ false positives.

e A plucking replaces the sunflower {Z1, Zs, ..., Z,} with
its core Z.
e A false positive is necessarily a coloring such that:

— There is a pair of identically colored nodes in each

petal Z; (and so both crude circuits return false).

— But the core contains distinctly colored nodes.

x This implies at least one node from each

same-color pair was plucked away.

e We now count the number of such colorings.
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Proof of Lemma 85 (continued)
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Proof of Lemma 85 (continued)

e Color nodes V' at random with k£ — 1 colors and let R(X)

denote the event that there are repeated colors in set X.
e Now prob|R(Z1) A---ANR(Z,) N—R(Z)] is at most

prob[R(Zl) -+ N R(Z, ) (Z)]

H prob|[R

— First equality holds because R(Z;) are independent

given ~R(Z) as Z contains their only common nodes.

— Last inequality holds as the likelihood of repetitions

in Z; decreases given no repetitions in Z C Z;.
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Proof of Lemma 85 (continued)

Consider two nodes in Z;.

1

The probability that they have identical color is —.

Now prob| R(Z;) ] < (%) < (2)

k—1 — k—1 — 2°
So the probability® that a random coloring is a new false

positive is at most 277 by inequality (12).

As there are (k — 1)™ different colorings, each plucking

introduces at most 27P(k — 1)™ false positives.

@Proportion, i.e.
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Proof of Lemma 85 (concluded)
Recall that | X UY | < 2M.

pluck(X U Y) ends the moment the set system contains
< M sets.

Each plucking reduces the number of sets by p — 1.
Hence at most - M pluckings occur in pluck(X U V).

At most Iy
—27P(k—-1)"
p—1

false positives are introduced.?

@Note that the numbers of errors are added not multiplied. Recall that
we count how many new errors are introduced by each approximation
step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.
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The Number of False Negatives

Lemma 86 CC(pluck(X UY)) introduces no false negatives.

e A plucking replaces sets in a crude circuit by their

(common) subset.

e This makes the test for cliqueness less stringent (p. 712).
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The Proof: AND

e The approximate AND of crude circuits CC(X) and
CC()) is

CC(plU.Ck({XZ U}/J : X; € X,Yj? c Y, ‘Xz UYH < E}))

e We now count the number of errors this approximate
AND makes on the positive and negative examples.
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The Proof: AND (concluded)

e The approximate AND introduces a false positive if a
negative example makes either CC(X’) or CC()) return
false but makes the approximate AND return true.

e The approximate AND introduces a false negative if a
positive example makes both CC(X) and CC()) return
true but makes the approximate AND return false.

e How many false positives and false negatives are
introduced by the approximate AND?
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The Number of False Positives

Lemma 87 The approximate AND introduces at most
M?27P(k — 1)™ false positives.

e We prove this claim in stages.

e CC{X;UY,: X, XY, €V} introduces no false
positives.
— It X; UY, is a clique, both X; and Y; must be

cliques, making both CC(X) and CC()) return true.

o CC{X,;UY;: X, € XY, € V,|X;UY;| </{}) introduces
no additional false positives because we are testing fewer
sets for cliqueness.
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Proof of Lemma 87 (concluded)
{X,UY;: X; €X,Y; €V, |X;UY;| < 0| < M2,

Each plucking reduces the number of sets by p — 1.

So pluck({X; UY, : X; e XY, € V,|X; UY;| < /})
involves < M?/(p — 1) pluckings.

Each plucking introduces at most 277(k — 1)” false
positives by the proof of Lemma 85 (p. 715).

The desired upper bound is

[(M?/(p—1)]27P(k — )" < M*27P(k — 1)".
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The Number of False Negatives

Lemma 88 The approximate AND introduces at most
M? (Z:ﬁj) false negatives.

e We again prove this claim in stages.

o CC{X;UY;: X, € XY, € V}) introduces no false

negatives.

— Suppose both CC(X) and CC()) accept a positive
example with a clique of size k.

— This clique must contain an X; € X and a Y; € ).
% This is why both CC(X) and CC()) return true.

— As the clique contains X; UY}, the new circuit

returns true.
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Proof of Lemma 88 (continued)

Cliqueof sizek




Proof of Lemma 88 (continued)
o CC{X;UY;: X, € XY, € V,|X;UY;| </}) introduces
< M? (Z:ﬁj) false negatives.

— Deletion of set Z = X; UY; larger than £ introduces

false negatives only if Z is part of a clique.

There are (Z:||§||) such cliques.

x It is the number of positive examples whose clique

contains /.

(1712 < (2i2h) as (2] > 0.

There are at most M?2 such Zs.
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Proof of Lemma 88 (concluded)

e Plucking introduces no false negatives.

— Recall that if CC(Z) is true, then CC(pluck(Z))
must be true (p. 712).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 728



Two Summarizing Lemmas

From Lemmas 85 (p. 715) and 87 (p. 723), we have:

Lemma 89 FEach approximation step introduces at most
M?27P(k — 1)™ false positives.
From Lemmas 86 (p. 720) and 88 (p. 725), we have:

Lemma 90 FEach approximation step introduces at most

M? (Z:gj) false negatives.
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The Proof (continued)

e The above two lemmas show that each approximation
step introduces “few” false positives and false negatives.

e We next show that the resulting crude circuit has “a

lot” of false positives or false negatives.
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The Final Crude Circuit

Lemma 91 FEvery final crude circuit 1s:
1. Identically false—thus wrong on all positive examples.
2. Or outputs true on at least half of the negative examples.
e Suppose it is not identically false.

e By construction, it accepts at least those graphs that

have a clique on some set X of nodes, with | X | </,

1/8 1/4

which at n is less than kK =n

The proof of Lemma 85 (p. 715ff) shows that at least
half of the colorings assign different colors to nodes in X.

So half of the negative examples have a clique in X and

are accepted.
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The Proof (continued)

e Recall the constants on p. 708: k£ = n1/4, V= n1/8,
p=n8logn, M = (p— 1) < n(/3n"® for large n.

e Suppose the final crude circuit is identically false.

— By Lemma 90 (p. 729), each approximation step
n—~—1

. 6—1) false negatives.

introduces at most M 2(
— There are (Z’) positive examples.

— The original monotone circuit for CLIQUE,, ; has at
least

k

n 14
(k) > 1 (n—€> Zn(1/12)n1/8

M2(hZ, o)) M?

gates for large n.
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The Proof (concluded)

e Suppose the final crude circuit is not identically false.

— Lemma 91 (p. 731) says that there are at least
(k —1)™/2 false positives.

— By Lemma 89 (p. 729), each approximation step
introduces at most M?27P(k — 1)" false positives

— The original monotone circuit for CLIQUE,, ;, has at
least
(k—1)"/2
M22-p(k —1)»
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Alexander Razborov (1963-)
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P =% NP Proved?

e Razborov’s theorem says that there is a monotone
language in NP that has no polynomial monotone

circuits.

e If we can prove that all monotone languages in P have
polynomial monotone circuits, then P # NP.

e But Razborov proved in 1985 that some monotone

languages in P have no polynomial monotone circuits!
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Finas
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