
Basic Modular Arithmeticsa

• Let m,n ∈ Z+.

• m |n means m divides n; m is n’s divisor.

• We call the numbers 0, 1, . . . , n− 1 the residue modulo
n.

• The greatest common divisor of m and n is denoted
gcd(m,n).

• The r in Theorem 49 (p. 391) is a primitive root of p.

• We now prove the existence of primitive roots and then
Theorem 49 (p. 391).

aCarl Friedrich Gauss.
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Basic Modular Arithmetics (concluded)

• We use
a ≡ b mod n

if n | (a− b).

– So 25 ≡ 38 mod 13.

• We use
a = b mod n

if n | (a− b) and 0 ≤ b < n; in other words, b is the
remainder of a divided by n.

– So 25 = 12 mod 13.
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Euler’sa Totient or Phi Function

• Let
Φ(n) = {m : 1 ≤ m < n, gcd(m,n) = 1}

be the set of all positive integers less than n that are
prime to n.b

– Φ(12) = {1, 5, 7, 11}.
• Define Euler’s function of n to be φ(n) = |Φ(n)|.
• φ(p) = p− 1 for prime p, and φ(1) = 1 by convention.

• Euler’s function is not expected to be easy to compute
without knowing n’s factorization.

aLeonhard Euler (1707–1783).
bZ∗n is an alternative notation.
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Two Properties of Euler’s Function

The inclusion-exclusion principlea can be used to prove the
following.

Lemma 52 φ(n) = n
∏

p|n(1− 1
p ).

• If n = pe1
1 pe2

2 · · · pe`

` is the prime factorization of n, then

φ(n) = n
∏̀

i=1

(
1− 1

pi

)
.

Corollary 53 φ(mn) = φ(m)φ(n) if gcd(m,n) = 1.
aConsult any textbook on discrete mathematics.
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A Key Lemma

Lemma 54
∑

m|n φ(m) = n.

• Let
∏`

i=1 pki
i be the prime factorization of n and consider

∏̀

i=1

[ φ(1) + φ(pi) + · · ·+ φ(pki
i ) ]. (4)

• Equation (4) equals n because φ(pk
i ) = pk

i − pk−1
i by

Lemma 52.

• Expand Eq. (4) to yield

∑

k′1≤k1,...,k′`≤k`

∏̀

i=1

φ(pk′i
i ).
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The Proof (concluded)

• By Corollary 53 (p. 404),

∏̀

i=1

φ(pk′i
i ) = φ

(∏̀

i=1

p
k′i
i

)
.

• So Eq. (4) becomes

∑

k′1≤k1,...,k′`≤k`

φ

(∏̀

i=1

p
k′i
i

)
.

• Each
∏`

i=1 p
k′i
i is a unique divisor of n =

∏`
i=1 pki

i .

• Equation (4) becomes
∑

m|n
φ(m).
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The Density Attack for primes

Witnesses to

compositeness


of 
n


All numbers < 
n
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The Density Attack for primes (continued)

1: for i = 1, 2, . . . , N do
2: Choose 1 ≤ m ≤ n randomly;
3: if m |n then
4: return “n is not a prime”;
5: end if
6: end for
7: return “n is (probably) a prime”;
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The Density Attack for primes (continued)

• It works, but does it work well?

• The ratio of numbers ≤ n relatively prime to n (the
white area) is φ(n)/n.

• When n = pq, where p and q are distinct primes,

φ(n)
n

=
pq − p− q + 1

pq
> 1− 1

q
− 1

p
.
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The Density Attack for primes (concluded)

• So the ratio of numbers ≤ n not relatively prime to n

(the grey area) is < (1/q) + (1/p).

– The “density attack” has probability < 2/
√

n of
factoring n = pq when p ∼ q = O(

√
n ).

– The “density attack” to factor n = pq hence takes
Ω(
√

n) steps on average when p ∼ q = O(
√

n ).

– This running time is exponential: Ω(20.5 log2 n).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 410



The Chinese Remainder Theorem

• Let n = n1n2 · · ·nk, where ni are pairwise relatively
prime.

• For any integers a1, a2, . . . , ak, the set of simultaneous
equations

x = a1 mod n1,

x = a2 mod n2,

...

x = ak mod nk,

has a unique solution modulo n for the unknown x.
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Fermat’s “Little” Theorema

Lemma 55 For all 0 < a < p, ap−1 = 1 mod p.

• Consider aΦ(p) = {am mod p : m ∈ Φ(p)}.
• aΦ(p) = Φ(p).

– aΦ(p) ⊆ Φ(p) as a remainder must be between 0 and
p− 1.

– Suppose am = am′ mod p for m > m′, where
m,m′ ∈ Φ(p).

– That means a(m−m′) = 0 mod p, and p divides a or
m−m′, which is impossible.

aPierre de Fermat (1601–1665).
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The Proof (concluded)

• Multiply all the numbers in Φ(p) to yield (p− 1)!.

• Multiply all the numbers in aΦ(p) to yield ap−1(p− 1)!.

• As aΦ(p) = Φ(p), ap−1(p− 1)! = (p− 1)! mod p.

• Finally, ap−1 = 1 mod p because p 6 |(p− 1)!.
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The Fermat-Euler Theorema

Corollary 56 For all a ∈ Φ(n), aφ(n) = 1 mod n.

• The proof is similar to that of Lemma 55 (p. 412).

• Consider aΦ(n) = {am mod n : m ∈ Φ(n)}.
• aΦ(n) = Φ(n).

– aΦ(n) ⊆ Φ(n) as a remainder must be between 0 and
n− 1 and relatively prime to n.

– Suppose am = am′ mod n for m′ < m < n, where
m,m′ ∈ Φ(n).

– That means a(m−m′) = 0 mod n, and n divides a or
m−m′, which is impossible.

aProof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on Novem-

ber 24, 2004.
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The Proof (concluded)a

• Multiply all the numbers in Φ(n) to yield
∏

m∈Φ(n) m.

• Multiply all the numbers in aΦ(n) to yield
aφ(n)

∏
m∈Φ(n) m.

• As aΦ(n) = Φ(n),

∏

m∈Φ(n)

m = aφ(n)


 ∏

m∈Φ(n)

m


 mod n.

• Finally, aφ(n) = 1 mod n because n 6 | ∏
m∈Φ(n) m.

aSome typographical errors corrected by Mr. Jung-Ying Chen

(D95723006) on November 18, 2008.
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An Example

• As 12 = 22 × 3,

φ(12) = 12×
(

1− 1
2

)(
1− 1

3

)
= 4.

• In fact, Φ(12) = {1, 5, 7, 11}.
• For example,

54 = 625 = 1 mod 12.
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Exponents

• The exponent of m ∈ Φ(p) is the least k ∈ Z+ such that

mk = 1 mod p.

• Every residue s ∈ Φ(p) has an exponent.

– 1, s, s2, s3, . . . eventually repeats itself modulo p, say
si = sj mod p, which means sj−i = 1 mod p.

• If the exponent of m is k and m` = 1 mod p, then k|`.
– Otherwise, ` = qk + a for 0 < a < k, and

m` = mqk+a = ma = 1 mod p, a contradiction.

Lemma 57 Any nonzero polynomial of degree k has at most
k distinct roots modulo p.
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Exponents and Primitive Roots

• From Fermat’s “little” theorem, all exponents divide
p− 1.

• A primitive root of p is thus a number with exponent
p− 1.

• Let R(k) denote the total number of residues in Φ(p)
that have exponent k.

• We already knew that R(k) = 0 for k 6 |(p− 1).

• So ∑

k|(p−1)

R(k) = p− 1

as every number has an exponent.
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Size of R(k)

• Any a ∈ Φ(p) of exponent k satisfies

xk = 1 mod p.

• Hence there are at most k residues of exponent k, i.e.,
R(k) ≤ k, by Lemma 57 (p. 417).

• Let s be a residue of exponent k.

• 1, s, s2, . . . , sk−1 are distinct modulo p.

– Otherwise, si = sj mod p with i < j.

– Then sj−i = 1 mod p with j − i < k, a contradiction.

• As all these k distinct numbers satisfy xk = 1 mod p,
they comprise all solutions of xk = 1 mod p.
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Size of R(k) (continued)

• But do all of them have exponent k (i.e., R(k) = k)?

• And if not (i.e., R(k) < k), how many of them do?

• Suppose ` < k and ` 6∈ Φ(k) with gcd(`, k) = d > 1.

• Then
(s`)k/d = (sk)`/d = 1 mod p.

• Therefore, s` has exponent at most k/d, which is less
than k.

• We conclude that

R(k) ≤ φ(k).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 420



Size of R(k) (concluded)

• Because all p− 1 residues have an exponent,

p− 1 =
∑

k|(p−1)

R(k) ≤
∑

k|(p−1)

φ(k) = p− 1

by Lemma 54 (p. 405).

• Hence

R(k) =





φ(k) when k|(p− 1)

0 otherwise

• In particular, R(p− 1) = φ(p− 1) > 0, and p has at least
one primitive root.

• This proves one direction of Theorem 49 (p. 391).
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A Few Calculations

• Let p = 13.

• From p. 414, we know φ(p− 1) = 4.

• Hence R(12) = 4.

• Indeed, there are 4 primitive roots of p.

• As
Φ(p− 1) = {1, 5, 7, 11},

the primitive roots are

g1, g5, g7, g11

for any primitive root g.
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The Other Direction of Theorem 49 (p. 391)

• We show p is a prime if there is a number r such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q 6= 1 mod p for all prime divisors q of p− 1.

• Suppose p is not a prime.

• We proceed to show that no primitive roots exist.

• Suppose rp−1 = 1 mod p (note gcd(r, p) = 1).

• We will show that the 2nd condition must be violated.
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The Proof (continued)

• So we proceed to show r(p−1)/q = 1 mod p for some
prime divisor q of p− 1.

• rφ(p) = 1 mod p by the Fermat-Euler theorem (p. 414).

• Because p is not a prime, φ(p) < p− 1.

• Let k be the smallest integer such that rk = 1 mod p.

• With the 1st condition, it is easy to show that k | (p− 1)
(similar to p. 417).

• Note that k |φ(p) (p. 417).

• As k ≤ φ(p), k < p− 1.
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The Proof (concluded)

• Let q be a prime divisor of (p− 1)/k > 1.

• Then k|(p− 1)/q.

• By the definition of k,

r(p−1)/q = 1 mod p.

• But this violates the 2nd condition.
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Function Problems

• Decision problems are yes/no problems (sat, tsp (d),
etc.).

• Function problems require a solution (a satisfying
truth assignment, a best tsp tour, etc.).

• Optimization problems are clearly function problems.

• What is the relation between function and decision
problems?

• Which one is harder?
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Function Problems Cannot Be Easier than Decision
Problems

• If we know how to generate a solution, we can solve the
corresponding decision problem.

– If you can find a satisfying truth assignment
efficiently, then sat is in P.

– If you can find the best tsp tour efficiently, then tsp

(d) is in P.

• But decision problems can be as hard as the
corresponding function problems.
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fsat

• fsat is this function problem:

– Let φ(x1, x2, . . . , xn) be a boolean expression.

– If φ is satisfiable, then return a satisfying truth
assignment.

– Otherwise, return “no.”

• We next show that if sat ∈ P, then fsat has a
polynomial-time algorithm.
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An Algorithm for fsat Using sat
1: t := ε; {Truth assignment.}
2: if φ ∈ sat then

3: for i = 1, 2, . . . , n do

4: if φ[ xi = true ] ∈ sat then

5: t := t ∪ {xi = true };
6: φ := φ[ xi = true ];

7: else

8: t := t ∪ {xi = false };
9: φ := φ[ xi = false ];

10: end if

11: end for

12: return t;

13: else

14: return “no”;

15: end if
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Analysis

• If sat can be solved in polynomial time, so can fsat.

– There are ≤ n + 1 calls to the algorithm for sat.a

– Boolean expressions shorter than φ are used in each
call to the algorithm for sat.

• Hence sat and fsat are equally hard (or easy).

• Note that this reduction from fsat to sat is not a Karp
reduction (recall p. 219).

• Instead, it calls sat multiple times as a subroutine and
moves on sat’s outputs.

aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.
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tsp and tsp (d) Revisited

• We are given n cities 1, 2, . . . , n and integer distances
dij = dji between any two cities i and j.

• tsp (d) asks if there is a tour with a total distance at
most B.

• tsp asks for a tour with the shortest total distance.

– The shortest total distance is at most
∑

i,j dij .
∗ Recall that the input string contains d11, . . . , dnn.
∗ Thus the shortest total distance is less than 2| x | in

magnitude, where x is the input (why?).

• We next show that if tsp (d) ∈ P, then tsp has a
polynomial-time algorithm.
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An Algorithm for tsp Using tsp (d)

1: Perform a binary search over interval [ 0, 2| x | ] by calling
tsp (d) to obtain the shortest distance, C;

2: for i, j = 1, 2, . . . , n do
3: Call tsp (d) with B = C and dij = C + 1;
4: if “no” then
5: Restore dij to old value; {Edge [ i, j ] is critical.}
6: end if
7: end for
8: return the tour with edges whose dij ≤ C;
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Analysis

• An edge that is not on any optimal tour will be
eliminated, with its dij set to C + 1.

• An edge which is not on all remaining optimal tours will
also be eliminated.

• So the algorithm ends with n edges which are not
eliminated (why?).

• There are O(|x |+ n2) calls to the algorithm for tsp (d).

• So if tsp (d) can be solved in polynomial time, so can
tsp.

• Hence tsp (d) and tsp are equally hard (or easy).
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Randomized Computation
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I know that half my advertising works,
I just don’t know which half.

— John Wanamaker

I know that half my advertising is
a waste of money,

I just don’t know which half!
— McGraw-Hill ad.
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Randomized Algorithmsa

• Randomized algorithms flip unbiased coins.

• There are important problems for which there are no
known efficient deterministic algorithms but for which
very efficient randomized algorithms exist.

– Extraction of square roots, for instance.

• There are problems where randomization is necessary.

– Secure protocols.

• Randomized version can be more efficient.

– Parallel algorithm for maximal independent set.
aRabin (1976); Solovay and Strassen (1977).
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“Four Most Important Randomized Algorithms”a

1. Primality testing.b

2. Graph connectivity using random walks.c

3. Polynomial identity testing.d

4. Algorithms for approximate counting.e

aTrevisan (2006).
bRabin (1976); Solovay and Strassen (1977).
cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
dSchwartz (1980); Zippel (1979).
eSinclair and Jerrum (1989).
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Bipartite Perfect Matching

• We are given a bipartite graph G = (U, V, E).

– U = {u1, u2, . . . , un}.
– V = {v1, v2, . . . , vn}.
– E ⊆ U × V .

• We are asked if there is a perfect matching.

– A permutation π of {1, 2, . . . , n} such that

(ui, vπ(i)) ∈ E

for all i ∈ {1, 2, . . . , n}.
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A Perfect Matching
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Symbolic Determinants

• We are given a bipartite graph G.

• Construct the n× n matrix AG whose (i, j)th entry AG
ij

is a variable xij if (ui, vj) ∈ E and zero otherwise.
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Symbolic Determinants (concluded)

• The determinant of AG is

det(AG) =
∑

π

sgn(π)
n∏

i=1

AG
i,π(i). (5)

– π ranges over all permutations of n elements.

– sgn(π) is 1 if π is the product of an even number of
transpositions and −1 otherwise.

– Equivalently, sgn(π) = 1 if the number of (i, j)s such
that i < j and π(i) > π(j) is even.a

aContributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.
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Determinant and Bipartite Perfect Matching

• In
∑

π sgn(π)
∏n

i=1 AG
i,π(i), note the following:

– Each summand corresponds to a possible perfect
matching π.

– All of these summands
∏n

i=1 AG
i,π(i) are different

monomials and will not cancel.

• It is essentially an exhaustive enumeration.

Proposition 58 (Edmonds (1967)) G has a perfect
matching if and only if det(AG) is not identically zero.
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A Perfect Matching in a Bipartite Graph
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The Perfect Matching in the Determinant

• The matrix is

AG =




0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55




.

• det(AG) = −x14x22x35x43x51 + x13x22x35x44x51 +
x14x22x31x43x55 − x13x22x31x44x55, each denoting a
perfect matching.
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How To Test If a Polynomial Is Identically Zero?

• det(AG) is a polynomial in n2 variables.

• There are exponentially many terms in det(AG).

• Expanding the determinant polynomial is not feasible.

– Too many terms.

• Observation: If det(AG) is identically zero, then it
remains zero if we substitute arbitrary integers for the
variables x11, . . . , xnn.

• But what is the likelihood of obtaining a zero when
det(AG) is not identically zero?
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Number of Roots of a Polynomial

Lemma 59 (Schwartz (1980)) Let p(x1, x2, . . . , xm) 6≡ 0
be a polynomial in m variables each of degree at most d. Let
M ∈ Z+. Then the number of m-tuples

(x1, x2, . . . , xm) ∈ {0, 1, . . . ,M − 1}m

such that p(x1, x2, . . . , xm) = 0 is

≤ mdMm−1.

• By induction on m (consult the textbook).
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Density Attack

• The density of roots in the domain is at most

mdMm−1

Mm
=

md

M
. (6)

• So suppose p(x1, x2, . . . , xm) 6≡ 0.

• Then a random

(x1, x2, . . . , xm) ∈ { 0, 1, . . . , M − 1 }m

has a probability of ≤ md/M of being a root of p.

• Note that M is under our control.

• One can raise M to lower the error probability, e.g.
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Density Attack (concluded)

Here is a sampling algorithm to test if p(x1, x2, . . . , xm) 6≡ 0.

1: Choose i1, . . . , im from {0, 1, . . . ,M − 1} randomly;
2: if p(i1, i2, . . . , im) 6= 0 then
3: return “p is not identically zero”;
4: else
5: return “p is (probably) identically zero”;
6: end if
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A Randomized Bipartite Perfect Matching Algorithma

We now return to the original problem of bipartite perfect
matching.

1: Choose n2 integers i11, . . . , inn from {0, 1, . . . , 2n2 − 1}
randomly;

2: Calculate det(AG(i11, . . . , inn)) by Gaussian elimination;
3: if det(AG(i11, . . . , inn)) 6= 0 then
4: return “G has a perfect matching”;
5: else
6: return “G has no perfect matchings”;
7: end if

aLovász (1979). According to Paul Erdős, Lovász wrote his first sig-

nificant paper “at the ripe old age of 17.”
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Analysis

• If G has no perfect matchings, the algorithm will always
be correct.

• Suppose G has a perfect matching.

– The algorithm will answer incorrectly with
probability at most n2d/(2n2) = 0.5 with d = 1 in
Eq. (6) on p. 447.

– Run the algorithm independently k times and output
“G has no perfect matchings” if and only if they all
say no.

– The error probability is now reduced to at most 2−k.
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Lószló Lovász (1948–)
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Remarksa

• Note that we are calculating

prob[ algorithm answers “no” |G has no perfect matchings ],

prob[ algorithm answers “yes” |G has a perfect matching ].

• We are not calculatingb

prob[G has no perfect matchings | algorithm answers “no” ],

prob[G has a perfect matching | algorithm answers “yes” ].

aThanks to a lively class discussion on May 1, 2008.
bNumerical Recipes in C (1988), “[As] we already remarked, statistics

is not a branch of mathematics!”
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But How Large Can det(AG(i11, . . . , inn)) Be?

• It is at most
n!

(
2n2

)n
.

• Stirling’s formula says n! ∼ √
2πn (n/e)n.

• Hence

log2 det(AG(i11, . . . , inn)) = O(n log2 n)

bits are sufficient for representing the determinant.

• We skip the details about how to make sure that all
intermediate results are of polynomial sizes.
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An Intriguing Questiona

• Is there an (i11, . . . , inn) that will always give correct
answers for the algorithm on p. 449?

• A theorem on p. 544 shows that such a witness exists!

• Whether it can be found efficiently is another question.
aThanks to a lively class discussion on November 24, 2004.
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Perfect Matching for General Graphs

• Page 438 is about bipartite perfect matching

• Now we are given a graph G = (V, E).

– V = {v1, v2, . . . , v2n}.
• We are asked if there is a perfect matching.

– A permutation π of {1, 2, . . . , 2n} such that

(vi, vπ(i)) ∈ E

for all vi ∈ V .

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 455



The Tutte Matrixa

• Given a graph G = (V,E), construct the 2n× 2n Tutte
matrix TG such that

TG
ij =





xij if (vi, vj) ∈ E and i < j,

−xij if (vi, vj) ∈ E and i > j,

0 othersie.

• The Tutte matrix is a skew-symmetric symbolic matrix.

• Similar to Proposition 58 (p. 442):

Proposition 60 G has a perfect matching if and only if
det(TG) is not identically zero.

aWilliam Thomas Tutte (1917–2002).
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William Thomas Tutte (1917–2002)
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