The KNAPSACK Problem
There is a set of n items.

Item 7 has value v; € Z™ and weight w; € Z.

We are given K € ZT and W € Z™.

KNAPSACK asks if there exists a subset S C {1,2,...,n}
such that } ., qw; <W and ), qv; > K.

— We want to achieve the maximum satisfaction within
the budget.
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KNAPSACK |Is NP-Complete?

e KNAPSACK € NP: Guess an S and verify the constraints.
o We assume v; = w; for all 2 and K = W.

e KNAPSACK now asks if a subset of {vy,vs,...,v,} adds
up to exactly K.

— Picture yourself as a radio DJ.

— Or a person trying to control the calories intake.

aKarp (1972).
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The Proof (continued)
We shall reduce EXACT COVER BY 3-SETS to KNAPSACK.

The primary differences between the two problems are:?
— Sets vs. numbers.

— Union vs. addition.

We are given a family F' = {S7,S55,...,5,} of size-3
subsets of U = {1,2,...,3m}.

EXACT COVER BY 3-SETS asks if there are m disjoint
sets in F' that cover the set U.

#Thanks to a lively class discussion on November 16, 2010.
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The Proof (continued)

e Think of a set as a bit vector in {0, 1}°™.
— 001100010 means the set {3, 4, 8}.
— 110010000 means the set {1,2,5}.

3m

.~
e Our goal is 11---1.
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The Proof (continued)

e A bit vector can also be seen as a binary number.

e Set union resembles addition.

— 001100010 + 110010000 = 111110010, which denotes
the set {1,2,3,4,5,8}, as desired.

e Trouble occurs when there is carry.

— 010000000 4 010000000 = 100000000, which denotes
the set {1}, not the desired {2}.

— 001100010 + 001110000 = 011010010, which denotes
the set {2,3,5,8}, not the desired {3,4,5,8}.2

2Corrected by Mr. Chihwei Lin (D97922003) on January 21, 2010.
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The Proof (continued)

e Carry may also lead to a situation where we obtain our

solution 11---1 with more than m sets in F'.

— 000100010 + 001110000 + 101100000 + 000001101 =
111111111,

— But the set on the left-hand side, {1,3,4,5,6,7,8,9},

is not an exact cover.
— And it uses 4 sets instead of the required m = 3.2

e To fix this problem, we enlarge the base just enough so

that there are no carries.

e Because there are n vectors in total, we change the base
from 2 ton + 1.

*Thanks to a lively class discussion on November 20, 2002.
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The Proof (continued)

e Set v; to be the integer corresponding to the bit vector
encoding S; in base n + 1:

V; = Z (’I’L + 1)3m_j
JES;

e Now in base n + 1, if there is a set .S such that
3m

ﬂH . . .
> icg Vi =11---1, then every bit position must be

contributed by exactly one v; and |S| = m.

e Finally, set

(base n + 1).
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The Proof (continued)

e Suppose F' admits an exact cover, say {S51,52,...,5m}-

e Then picking S = {1,2,...,m} clearly results in

3m
—N—
v +vo+---+v, =11---1.

— It is important to note that the meaning of addition
(4+) is independent of the base.?
— It is just regular addition.

— But an S; may give rise to different integer v;’s under

different bases.

2Contributed by Mr. Kuan-Yu Chen (R92922047) on November 3,
2004.
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The Proof (concluded)

e On the other hand, suppose there exists an S such that

3m

—
Ziesvfé:ll---lin base n + 1.

e The no-carry property implies that |S| = m and

{S; :i € S} is an exact cover.
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An Example

e Let m=3,U ={1,2,3,4,5,6,7,8,9}, and

{1,3,4},
{2, 3,4},
{2,5,6},
{6,7,8},
{7,8,9}.

e Note that n = 5, as there are 5 .5;’s.
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An Example (concluded)

e Our reduction produces

K | ..-1 (base 6) = 2015539,

V1 101100000 = 1734048,
V2 011100000 = 334368,
V3 010011000 = 281448,
V4 000001110 = 238,

U5 000000111 = 43.

[ ] Note ’Ul—l—Ug—l-’U5 :K
e Indeed, S; U S3U S5 =11,2,3,4,5,6,7,8,9}, an exact

cover by 3-sets.
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BIN PACKING

e We are given NN positive integers ai,as,...,ay, an

integer C' (the capacity), and an integer B (the number
of bins).

e BIN PACKING asks if these numbers can be partitioned

into B subsets, each of which has total sum at most C.
e Think of packing bags at the check-out counter.

Theorem 46 BIN PACKING s NP-complete.
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INTEGER PROGRAMMING

e INTEGER PROGRAMMING asks whether a system of linear
inequalities with integer coeflicients has an integer

solution.

e In contrast, LINEAR PROGRAMMING asks whether a

system of linear inequalities with integer coefficients has

a rational solution.
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INTEGER PROGRAMMING Is NP-Complete?

e SET COVERING can be expressed by the inequalities
Az > T, Y12 < B,0<uz; <1, where

— x; is one if and only if S; is in the cover.

A is the matrix whose columns are the bit vectors of
the sets 51, 99, .. ..

1 is the vector of 1s.

— The operations in Ax are standard matrix operations.
e This shows INTEGER PROGRAMMING is NP-hard.

e Many NP-complete problems can be expressed as an
INTEGER PROGRAMMING problem.

2Papadimitriou (1981).
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Christos Papadimitriou
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Easier or Harder?®
e Adding restrictions on the allowable problem instances
will not make a problem harder.
— We are now solving a subset of problem instances.

The INDEPENDENT SET proof (p. 309) and the
KNAPSACK proof (p. 358).

SAT to 2SAT (easier by p. 292).

CIRCUIT VALUE to MONOTONE CIRCUIT VALUE
(equally hard by p. 266).

2Thanks to a lively class discussion on October 29, 2003.
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Easier or Harder? (concluded)

e Adding restrictions on the allowable solutions may make
a problem easier, as hard, or harder.

e It is problem dependent.
— MIN CUT to BISECTION WIDTH (harder by p. 335).

LINEAR PROGRAMMING to INTEGER PROGRAMMING
(harder by p. 369).

SAT to NAESAT (equally hard by p. 303) and MAX
CUT to MAX BISECTION (equally hard by p. 333).

3-COLORING to 2-COLORING (easier by p. 343).
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coNP and Function Problems
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coNP

e NP is the class of problems that have succinct

certificates (recall Proposition 35 on p. 276).

e By definition, coNP is the class of problems whose

complement is in NP.
e coNP is therefore the class of problems that have
succinct disqualifications:

— A “no” instance of a problem in coNP possesses a
short proof of its being a “no” instance.

— Only “no” instances have such proofs.
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coNP (continued)

e Suppose L is a coNP problem.
e There exists a polynomial-time nondeterministic
algorithm M such that:

— If x € L, then M (x) = “yes” for all computation
paths.

— If x ¢ L, then M (x) = “no” for some computation

path.

e Note that if we swap “yes” and “no” of M, the new
algorithm M’ decides L € NP in the classic sense (p. 77).
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coNP (concluded)
e Clearly P C coNP.

e [t is not known if
P = NP N coNP.
— Contrast this with

R = RENcoRE

(see Proposition 11 on p. 135).
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Some coNP Problems

e VALIDITY € coNP.
— If ¢ is not valid, it can be disqualified very succinctly:
a truth assignment that does not satisty it.
e SAT COMPLEMENT € coNP.

— SAT COMPLEMENT is the complement of SAT.

— The disqualification is a truth assignment that

satisfies it.

e HAMILTONIAN PATH COMPLEMENT € coNP.

— The disqualification is a Hamiltonian path.
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Some coNP Problems (concluded)

e OPTIMAL TSP (D) € coNP.

— OPTIMAL TSP (D) asks if the optimal tour has a total

distance of B, where B is an input.?

— The disqualification is a tour with a length < B.

2Defined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.
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A Nondeterministic Algorithm for SAT COMPLEMENT

¢ is a boolean formula with n variables.
fori:=1,2,...,ndo

Guess x; € {0, 1}; {Nondeterministic choice.}
end for
{Verification:}
if ¢(x1,22,...,2,) =1 then

“no”;
else

44 7

yes
end if

1:
2:
3:
4:
5:
6:
7
8:
9:
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Analysis

e The algorithm decides language {¢ : ¢ is unsatisfiable}.

— The computation tree is a complete binary tree of
depth n.

Every computation path corresponds to a particular
truth assignment out of 2.

¢ is unsatisfiable iff every truth assignment falsifies ¢.

But every truth assignment falsifies ¢ iff every

computation path results in “yes.”
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An Alternative Characterization of coNP

Proposition 47 Let L C X* be a language. Then L € coNP
of and only if there is a polynomially decidable and
polynomially balanced relation R such that

L=A{x:Vy(z,y) € R}.

(As on p. 275, we assume |y | < |z |¥ for some k.)

o L ={x:3y(x,y) € ~R}.

e Because —R remains polynomially balanced, L € NP by
Proposition 35 (p. 276).

Hence L € coNP by definition.
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coNP-Completeness

Proposition 48 L is NP-complete if and only if its
complement L = ¥* — L is coNP-complete.

Proof (=; the < part is symmetric)
e Let L’ be any coNP language.
Hence L' € NP.
Let R be the reduction from L’ to L.
So xz € L' if and only if R(z) € L.
Equivalently, z ¢ L’ if and only if R(x) ¢ L (the law of

transposition).
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coNP Completeness (concluded)

e Soz € L' if and only if R(x) € L.
e R is a reduction from I’/ to L.

e But L € coNP.
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Some coNP-Complete Problems

e SAT COMPLEMENT is coNP-complete.

e VALIDITY is coNP-complete.
— ¢ is valid if and only if —¢ is not satisfiable.
— The reduction from SAT COMPLEMENT to VALIDITY

is hence easy.

e HAMILTONIAN PATH COMPLEMENT is coNP-complete.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 386



Possible Relations between P, NP, coNP

1. P = NP = coNP.
2. NP = coNP but P £ NP.
3. NP = coNP and P # NP.

e This is the current “consensus.”
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The Primality Problem

An integer p is prime if p > 1 and all positive numbers

other than 1 and p itself cannot divide it.
PRIMES asks if an integer IV is a prime number.

Dividing N by 2,3,...,VN is not efficient.

— The length of N is only log N, but /N = 20-5log N

— So it is an exponential-time algorithm.

A polynomial-time algorithm for PRIMES was not found
until 2002 by Agrawal, Kayal, and Saxena!

Later, we will focus on efficient “probabilistic”
algorithms for PRIMES (used in Mathematica, e.g.).
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if n = a® for some a,b > 1 then

return “composite”;
end if
forr=2,3,...,n—1do

if gcd(n,r) > 1 then

return “composite”;
end if
if r is a prime then

Let g be the largest prime factor of r — 1;
if ¢ > 4y/Tlogn and n{""1/9 £ 1 mod r then

break; {Exit the for-loop.}
end if
end if
: end for{r — 1 has a prime factor ¢ > 4y/rlogn.}
: fora=1,2,...,2y/rlogn do
if (x —a)™ # (2™ —a) mod (" — 1) in Z,,[z ] then
return “composite”;
end if
: end for
: return “prime”; {The only place with “prime” output.}
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The Primality Problem (concluded)

e NP N coNP is the class of problems that have succinct
certificates and succinct disqualifications.

— Each “yes” instance has a succinct certificate.
— Each “no” instance has a succinct disqualification.

— No instances have both.

e We will see that PRIMES € NP N coNP.

— In fact, PRIMES € P as mentioned earlier.
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Primitive Roots in Finite Fields

Theorem 49 (Lucas and Lehmer (1927)) # A number
p > 1 is prime if and only if there is a number 1 <r <p

(called the primitive root or generator) such that

1. Y»71 =1 mod p, and

2. rP=1/a £ 1 mod p for all prime divisors q¢ of p — 1.

e We will prove the theorem later (see pp. 402ff).

2Frangois Edouard Anatole Lucas (1842-1891); Derrick Henry
Lehmer (1905-1991).
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Derrick Lehmer (1905-1991)
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Pratt's Theorem

Theorem 50 (Pratt (1975)) PRIMES € NP N coNP.

e PRIMES is in coNP because a succinct disqualification is

a proper divisor.

— A proper divisor of a number n means n is not a

prime.
e Suppose p is a prime.

e p’s certificate includes the r in Theorem 49 (p. 391).

e Use recursive doubling to check if 7P~ =1 mod p in

time polynomial in the length of the input, log, p.

— r,r2,rt, ... mod p, a total of ~ log, p steps.
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The Proof (concluded)

We also need all prime divisors of p — 1: q1, 92, ..., qk.
— Whether 7, q1,...,q. are easy to find is irrelevant.

— There may be multiple choices for r.

Checking r(P~1)/4% £ 1 mod p is also easy.

Checking q1, qo, ..., q. are all the divisors of p — 1 is easy.
We still need certificates for the primality of the g;’s.

The complete certificate is recursive and tree-like:

C(p) = (r;q1,C(q1), 92, C(q2); - - -, @i, Cqr)).

We next prove that C(p) is succinct.

As a result, C(p) can be checked in polynomial time.
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The Succinctness of the Certificate
Lemma 51 The length of C(p) is at most quadratic at
51ogs p.
e This claim holds when p =2 or p = 3.

e In general, p — 1 has £ < log, p prime divisors
1 =2,q2,- -, Gk

— Reason:

k
2k SHC]@SP—L
i—1

e Note also that, as ¢; = 2,
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The Proof (continued)

C'(p) requires:

2 parentheses;
2k < 2log, p separators (at most 2log, p bits);
r (at most log, p bits);
g1 = 2 and its certificate 1 (at most 5 bits);
g2, - --,qr (at most 2log, p bits);?
Clg2),-- -, Caqr)

aWhy?
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The Proof (concluded)

e ('(p) is succinct because, by induction,

k
C(p)] < 5logyp+5+5)» logg
1=2

2
k
5logyp+5+5 (Z log, qi>

1=2

—1
5log, p + 5 4 5log; pT by inequality (3)

5logy p + 5+ 5(logy p — 1)°
5logs p + 10 — 5logy p < 5log3 p
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A Certificate for 232

Note that 7 is a primitive root modulo 23 and
23 —1=22=2 x11.

So
C'(23) =(7,2,C(2),11,C(11)).

Note that 2 is a primitive root modulo 11 and
11-1=10=2 x 5.

So

O(11) = (2,2,C(2),5,0(5)).

aThanks to a lively discussion on April 24, 2008.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 398



A Certificate for 23 (concluded)

e Note that 2 is a primitive root modulo 5 and
h—1=4 =22

e So

C'(5) =(2,2,C(2)).

e In summary,

C(23) = (7,2, C(2),11, (2,2, C(2), 5, (2,2,C(2)))).
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