Theory of Computation

Mid-Term Examination on November 8, 2011 Fall Semester, 2011 Note: You may use any result proved in class.

Problem 1 (30 points) It is known that 3-COLORING is NP-complete. Show that 6-COLORING is NP-complete. (You do not need to show that it is in NP.)

Ans: We reduce 3-COLORING to 6-COLORING (the problem of asking if a graph can be colored by 6 or fewer colors such that no adjacent nodes have the same color). Given a graph G(V, E) for 3-COLORING, the reduction outputs a graph G'(V', E') by adding 3 new nodes with edges between each of the 3 nodes and all the other nodes in V. That is, $V' = V \bigcup \{x_1, x_2, x_3\}$ and $E' = E \bigcup \{(x_i, v) | v \in V', i = 1, 2, 3, x_i \neq v\}$. If $G \in$ 3-COLORING, then $G' \in$ 6-COLORING because 3 or fewer colors for the nodes in V and additional 3 colors for those in $\{x_1, x_2, x_3\}$ suffice to make no adjacent nodes have the same color. Conversely, consider a legal coloring of G' with 6 or fewer colors. In such a coloring, $\{x_1, x_2, x_3\}$ use up exactly 3 colors, leaving at most 3 colors for the nodes in V.

Problem 2 (30 points) Let $A \to B$ denote the set of functions from set A to set B. (a) [15 points] How many functions in $\{0, 1, 2, 3\}^n \to \{0, 1\}$ are there? (b) [15 points] How many functions in $(\{0, 1, 2, 3\}^n \to \{0, 1\}) \to \{0, 1, 2\}^m$ are there? (Do not write something like x^{a^b} as it is ambiguous. Write $x^{(a^b)}$ or $(x^a)^b$.)

Ans: (a) $2^{(4^n)}$. (b) $(3^m)^{(2^{(4^n)})}$.

Problem 3 (15 points) Show that if L and \overline{L} are recursively enumerable, then L is recursive.

Ans: Suppose that L and \overline{L} are accepted by the one-string Turing machines M and \overline{M} , respectively. Then L is decided by a two-string Turing machine M', defined as follows. On input x, M' simulates, on two different strings, M and \overline{M} on x in an interleaved fashion. That is, it simulates a step of M, then a step of \overline{M} , then again another step of M, and so on. Since x is a member of L or \overline{L} (but not both), exactly one of the two machines will halt and accept. If M accepts, then M' halts on state "yes." If \overline{M} accepts, then M' halts on "no."

Problem 4 (25 points) Let L denote the language { M : M halts on all inputs }. Show that L is not a recursive language, that is, membership in L is undecidable.

Ans: We know the Halting Problem $H = \{ M; x : M(x) \neq \nearrow \}$ is undecidable. Given the question " $M; x \in H$?", we construct the machine: $M_x(y) : M(x)$. M_x halts on all inputs if and only if M halts on x. In other words, $M_x \in L$ if and only if $M; x \in H$. So if L were recursive, H would be recursive, a contradiction.