
Complements of Nondeterministic Classes

• From p. 133, we know R, RE, and coRE are distinct.

– coRE contains the complements of languages in RE,
not the languages not in RE.

• Recall that the complement of L, denoted by L̄, is the
language Σ∗ − L.

– sat complement is the set of unsatisfiable boolean
expressions.

– hamiltonian path complement is the set of
graphs without a Hamiltonian path.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 181

The Co-Classes

• For any complexity class C, coC denotes the class

{L : L̄ ∈ C}.

• Clearly, if C is a deterministic time or space complexity
class, then C = coC.
– They are said to be closed under complement.

– A deterministic TM deciding L can be converted to
one that decides L̄ within the same time or space
bound by reversing the “yes” and “no” states.

• Whether nondeterministic classes for time are closed
under complement is not known (p. 79).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 182

Comments

• As
coC = {L : L̄ ∈ C},

L ∈ C if and only if L̄ ∈ coC.
• But it is not true that L ∈ C if and only if L 6∈ coC.

– coC is not defined as C̄.
• For example, suppose C = {{2, 4, 6, 8, 10, . . .}}.
• Then coC = {{1, 3, 5, 7, 9, . . .}}.
• But C̄ = 2{1,2,3,...}∗ − {{2, 4, 6, 8, 10, . . .}}.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 183

The Quantified Halting Problem

• Let f(n) ≥ n be proper.

• Define

Hf = {M ; x : M accepts input x

after at most f(|x |) steps},

where M is deterministic.

• Assume the input is binary.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 184

Hf ∈ TIME(f(n)3)

• For each input M ; x, we simulate M on x with an alarm
clock of length f(|x |).
– Use the single-string simulator (p. 57), the universal

TM (p. 118), and the linear speedup theorem (p. 64).

– Our simulator accepts M ; x if and only if M accepts
x before the alarm clock runs out.

• From p. 63, the total running time is O(`Mk2
Mf(n)2),

where `M is the length to encode each symbol or state of
M and kM is M ’s number of strings.

• As `Mk2
M = O(n), the running time is O(f(n)3), where

the constant is independent of M .

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 185

Hf 6∈ TIME(f(bn/2c))
• Suppose TM MHf

decides Hf in time f(bn/2c).
• Consider machine Df (M):

if MHf
(M ;M) = “yes” then “no” else “yes”

• Df on input M runs in the same time as MHf
on input

M ; M , i.e., in time f(b 2n+1
2 c) = f(n), where n = |M |.a

aA student pointed out on October 6, 2004, that this estimation omits

the time to write down M ; M .

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 186

The Proof (concluded)

• First,

Df (Df) = “yes”

⇒ Df ; Df 6∈ Hf

⇒ Df does not accept Df within time f(|Df |)
⇒ Df (Df) 6= “yes”

⇒ Df (Df) = “no”

a contradiction

• Similarly, Df (Df) = “no” ⇒ Df (Df) = “yes.”

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 187

The Time Hierarchy Theorem

Theorem 16 If f(n) ≥ n is proper, then

TIME(f(n)) (TIME(f(2n + 1)3).

• The quantified halting problem makes it so.

Corollary 17 P (EXP.

• P ⊆ TIME(2n) because poly(n) ≤ 2n for n large enough.

• But by Theorem 16,

TIME(2n) (TIME((22n+1)3) ⊆ TIME(2n2
) ⊆ EXP.

• So P (EXP.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 188

The Space Hierarchy Theorem

Theorem 18 (Hennie and Stearns (1966)) If f(n) is
proper, then

SPACE(f(n)) (SPACE(f(n) log f(n)).

Corollary 19 L (PSPACE.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 189

Nondeterministic Time Hierarchy Theorems

Theorem 20 (Cook (1973)) If f(n) is proper, then

NTIME(nr) (NTIME(ns)

whenever 1 ≤ r < s.

Theorem 21 (Seiferas, Fischer, and Meyer (1978)) If
T1(n), T2(n) are proper, then

NTIME(T1(n)) (NTIME(T2(n))

whenever T1(n + 1) = o(T2(n)).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 190

The Reachability Method

• The computation of a time-bounded TM can be
represented by a directed graph.

• The TM’s configurations constitute the nodes.

• Two nodes are connected by a directed edge if one yields
the other.

• The start node representing the initial configuration has
zero in degree.

• When the TM is nondeterministic, a node may have an
out degree greater than one.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 191

Illustration of the Reachability Method

yes

yes

Initial

configuration

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 192

Relations between Complexity Classes

Theorem 22 Suppose f(n) is proper. Then

1. SPACE(f(n)) ⊆ NSPACE(f(n)),
TIME(f(n)) ⊆ NTIME(f(n)).

2. NTIME(f(n)) ⊆ SPACE(f(n)).

3. NSPACE(f(n)) ⊆ TIME(klog n+f(n)).

• Proof of 2:

– Explore the computation tree of the NTM for “yes.”

– Specifically, generate a f(n)-bit sequence denoting
the nondeterministic choices over f(n) steps.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 193

Proof of Theorem 22(2)

• (continued)

– Simulate the NTM based on the choices.

– Recycle the space and then repeat the above steps
until a “yes” is encountered or the tree is exhausted.

– Each path simulation consumes at most O(f(n))
space because it takes O(f(n)) time.

– The total space is O(f(n)) because space is recycled.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 194

Proof of Theorem 22(3)

• Let k-string NTM

M = (K, Σ, ∆, s)

with input and output decide L ∈ NSPACE(f(n)).

• Use the reachability method on the configuration graph
of M on input x of length n.

• A configuration is a (2k + 1)-tuple

(q, w1, u1, w2, u2, . . . , wk, uk).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 195

Proof of Theorem 22(3) (continued)

• We only care about

(q, i, w2, u2, . . . , wk−1, uk−1),

where i is an integer between 0 and n for the position of
the first cursor.

• The number of configurations is therefore at most

|K| × (n + 1)× |Σ|(2k−4)f(n) = O(clog n+f(n)
1) (1)

for some c1, which depends on M .

• Add edges to the configuration graph based on M ’s
transition function.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 196

Proof of Theorem 22(3) (concluded)

• x ∈ L ⇔ there is a path in the configuration graph from
the initial configuration to a configuration of the form
(“yes”, i, . . .) [there may be many of them].

• This is reachability on a graph with O(clog n+f(n)
1)

nodes.

• It is in TIME(clog n+f(n)) for some c because
reachability ∈ TIME(nj) for some j and

[
c
log n+f(n)
1

]j

= (cj
1)

log n+f(n).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 197

Space-Bounded Computation and Proper Functions

• In the definition of space-bounded computations earlier,
the TMs are not required to halt at all.

• When the space is bounded by a proper function f ,
computations can be assumed to halt:

– Run the TM associated with f to produce an output
of length f(n) first.

– The space-bounded computation must repeat a
configuration if it runs for more than clog n+f(n) steps
for some c (p. 196).

– So we can prevent infinite loops during simulation by
pruning any path longer than clog n+f(n).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 198

The Grand Chain of Inclusions

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

• By Corollary 19 (p. 189), we know L (PSPACE.

• The chain must break somewhere between L and
PSPACE.a

• It is suspected that all four inclusions are proper.

• But there are no proofs yet.b

aBill Gates (1996), “I keep bumping into that silly quotation at-

tributed to me that says 640K of memory is enough.”
bCarl Friedrich Gauss (1777–1855), “I could easily lay down a mul-

titude of such propositions, which one could neither prove nor dispose

of.”

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 199

Nondeterministic Space and Deterministic Space

• By Theorem 4 (p. 84),

NTIME(f(n)) ⊆ TIME(cf(n)),

an exponential gap.

• There is no proof yet that the exponential gap is
inherent.

• How about NSPACE vs. SPACE?

• Surprisingly, the relation is only quadratic—a
polynomial—by Savitch’s theorem.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 200

Savitch’s Theorem

Theorem 23 (Savitch (1970))

reachability ∈ SPACE(log2 n).

• Let G(V, E) be a graph with n nodes.

• For i ≥ 0, let
PATH(x, y, i)

mean there is a path from node x to node y of length at
most 2i.

• There is a path from x to y if and only if

PATH(x, y, dlog ne)
holds.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 201

The Proof (continued)

• For i > 0, PATH(x, y, i) if and only if there exists a z

such that PATH(x, z, i− 1) and PATH(z, y, i− 1).

• For PATH(x, y, 0), check the input graph or if x = y.

• Compute PATH(x, y, dlog ne) with a depth-first search
on a graph with nodes (x, y, z, i)s (see next page).a

• Like stacks in recursive calls, we keep only the current
path of (x, y, i)s.

• The space requirement is proportional to the depth of
the tree: dlog ne.

aContributed by Mr. Chuan-Yao Tan on October 11, 2011.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 202

3$7+�[�\�ORJ�Q�

3$7+�[�]�ORJ�Q��� 3$7+�]�\�ORJ�Q���

Ø\HVÙ
ØQRÙ

ØQRÙ

• Depth is dlog ne, and each node (x, y, z, i) needs space
O(log n).

• The total space is O(log2 n).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 203

The Proof (concluded): Algorithm for PATH(x, y, i)
1: if i = 0 then

2: if x = y or (x, y) ∈ E then

3: return true;

4: else

5: return false;

6: end if

7: else

8: for z = 1, 2, . . . , n do

9: if PATH(x, z, i− 1) and PATH(z, y, i− 1) then

10: return true;

11: end if

12: end for

13: return false;

14: end if

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 204

The Relation between Nondeterministic Space and
Deterministic Space Only Quadratic

Corollary 24 Let f(n) ≥ log n be proper. Then

NSPACE(f(n)) ⊆ SPACE(f2(n)).

• Apply Savitch’s proof to the configuration graph of the
NTM on the input.

• From p. 196, the configuration graph has O(cf(n))
nodes; hence each node takes space O(f(n)).

• But if we construct explicitly the whole graph before
applying Savitch’s theorem, we get O(cf(n)) space!

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205

The Proof (continued)

• The way out is not to generate the graph at all.

• Instead, keep the graph implicit.

• We check for connectedness only when i = 0 on p. 204,
by examining the input string G.

• There, given configurations x and y, we go over the
Turing machine’s program to determine if there is an
instruction that can turn x into y in one step.a

aThanks to a lively class discussion on October 15, 2003.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 206

The Proof (concluded)

• The z variable in the algorithm on p. 204 simply runs
through all possible valid configurations.

– Let z = 0, 1, . . . , O(cf(n)).

– Make sure z is a valid configuration before using it in
the recursive calls.a

• Each z has length O(f(n)) by Eq. (1) on p. 196.
aThanks to a lively class discussion on October 13, 2004.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 207

Implications of Savitch’s Theorem

• PSPACE = NPSPACE.

• Nondeterminism is less powerful with respect to space.

• Nondeterminism may be very powerful with respect to
time as it is not known if P = NP.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 208

Nondeterministic Space Is Closed under Complement

• Closure under complement is trivially true for
deterministic complexity classes (p. 182).

• It is known thata

coNSPACE(f(n)) = NSPACE(f(n)). (2)

• So

coNL = NL,

coNPSPACE = NPSPACE.

• But there are still no hints of coNP = NP.
aSzelepscényi (1987) and Immerman (1988).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 209

Reductions and Completeness

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 210

Degrees of Difficulty

• When is a problem more difficult than another?

• B reduces to A if there is a transformation R which for
every input x of B yields an equivalent input R(x) of A.

– The answer to x for B is the same as the answer to
R(x) for A.

– There must be restrictions on the complexity of
computing R.

– Otherwise, R(x) may solve B, defeating the purpose.

∗ E.g., R(x) = “yes” if and only if x ∈ B!

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 211

Degrees of Difficulty (concluded)

• We say problem A is at least as hard as problem B if B
reduces to A.

• This makes intuitive sense: If A is able to solve your
problem B after only a little bit of work of R, then A
must be at least as hard.

– If A is easy to solve, it combined with R (which is
also easy) would make B easy to solve, too.a

– If B is hard to solve, A must be hard (if not harder)
to solve, too.

aThanks to a lively class discussion on October 13, 2009.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 212

Reduction

x
 yes/no
R
(
x
)

R

algorithm

for A

Solving problem B by calling the algorithm for problem A
once and without further processing its answer.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 213

Commentsa

• Suppose B reduces to A via a transformation R.

• The input x is an instance of B.

• The output R(x) is an instance of A.

• R(x) may not span all possible instances of A.b

– Some instances of A may never appear in the range
of R.

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.
bR(x) may not be onto; Mr. Alexandr Simak (D98922040) on October

13, 2009.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 214

Reduction between Languages

• Language L1 is reducible to L2 if there is a function R

computable by a deterministic TM in space O(log n).

• Furthermore, for all inputs x, x ∈ L1 if and only if
R(x) ∈ L2.

• R is said to be a (Karp) reduction from L1 to L2.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 215

Reduction between Languages (concluded)

• Note that by Theorem 22 (p. 193), R runs in polynomial
time.

– In most cases, a polynomial-time R suffices for proofs.

• Suppose R is a reduction from L1 to L2.

• Then solving “R(x) ∈ L2?” is an algorithm for solving
“x ∈ L1?”a

aBut it may not be an optimal one.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 216

A Paradox?

• Degree of difficulty is not defined in terms of absolute
complexity.

• So a language B ∈ TIME(n99) may be “easier” than a
language A ∈ TIME(n3).

– This happens when B is reducible to A.

• But isn’t this a contradiction if the best algorithm for B
requires n99 steps?

• That is, how can a problem requiring n99 steps be
reducible to a problem solvable in n3 steps?

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 217

Paradox Resolved

• The so-called contradiction does not hold.

• When we solve the problem “x ∈ B?” via “R(x) ∈ A?”,
we must consider the time spent by R(x) and its length
|R(x) |.

• If |R(x) | = Ω(n33), then answering “R(x) ∈ A?” takes
Ω((n33)3) = Ω(n99) steps, and there is no contradiction.

• Suppose, on the other hand, that |R(x) | = o(n33).

• Then R(x) must run in time Ω(n99) to make the overall
time for answering “R(x) ∈ A?” take Ω(n99) steps.

• In either case, the contradiction disappears.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 218

