
More Undecidability

• H∗ = {M : M halts on all inputs}.
– Given the question “M ; x ∈ H?” we construct the

following machine:a

Mx(y) : M(x).

– Mx halts on all inputs if and only if M halts on x.

– In other words, Mx ∈ H∗ if and only if M ;x ∈ H.

– So if H∗ were recursive, H would be recursive, a
contradiction.

aSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.

Mx ignores its input y; x is part of Mx’s code but not Mx’s input.
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More Undecidability (concluded)

• {M ; x : there is a y such that M(x) = y}.
• {M ; x : the computation M on input x uses all states of M}.

• {M ; x; y : M(x) = y}.
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Complements of Recursive Languages

Lemma 9 If L is recursive, then so is L̄.

• Let L be decided by M (which is deterministic).

• Swap the “yes” state and the “no” state of M .

• The new machine decides L̄.
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Recursive and Recursively Enumerable Languages

Lemma 10 L is recursive if and only if both L and L̄ are
recursively enumerable.

• Suppose both L and L̄ are recursively enumerable,
accepted by M and M̄ , respectively.

• Simulate M and M̄ in an interleaved fashion.

• If M accepts, then x ∈ L and M ′ halts on state “yes.”

• If M̄ accepts, then x 6∈ L and M ′ halts on state “no.”
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A Very Useful Corollary and Its Consequences

Corollary 11 L is recursively enumerable but not recursive,
then L̄ is not recursively enumerable.

• Suppose L̄ is recursively enumerable.

• Then both L and L̄ are recursively enumerable.

• By Lemma 10 (p. 131), L is recursive, a contradiction.

Corollary 12 H̄ is not recursively enumerable.
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are
recursively enumerable (note that coRE is not RE).

• coRE = {L : L ∈ RE }.
• RE = {L : L 6∈ RE }.

R: The set of all recursive languages.
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R, RE, and coRE (concluded)

• R = RE ∩ coRE (p. 131).

• There exist languages in RE but not in R and not in
coRE.

– Such as H (p. 120, p. 121, and p. 132).

• There are languages in coRE but not in RE.

– Such as H̄ (p. 132).

• There are languages in neither RE nor coRE.
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Undecidability in Logic and Mathematics

• First-order logic is undecidable (answer to Hilbert’s
(1928) “Entscheidungsproblem”).a

• Natural numbers with addition and multiplication is
undecidable.b

• Rational numbers with addition and multiplication is
undecidable.c

aChurch (1936).
bRosser (1937).
cRobinson (1948).
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Undecidability in Logic and Mathematics (concluded)

• Natural numbers with addition and equality is decidable
and complete.a

• Elementary theory of groups is undecidable.b

aPresburger’s Master’s thesis (1928), his only work in logic. The

direction was suggested by Tarski. Mojz̄esz Presburger (1904–1943) died

in a concentration camp during World War II.
bTarski (1949).
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Julia Hall Bowman Robinson (1919–1985)
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Alfred Tarski (1901–1983)
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Boolean Logic
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It seemed unworthy of a grown man
to spend his time on such trivialities,

but what was I to do?
— Bertrand Russell (1872–1970),

Autobiography, Vol. I
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Boolean Logica

Boolean variables: x1, x2, . . ..

Literals: xi, ¬xi.

Boolean connectives: ∨,∧,¬.

Boolean expressions: Boolean variables, ¬φ (negation),

φ1 ∨ φ2 (disjunction), φ1 ∧ φ2 (conjunction).

• ∨n
i=1 φi stands for φ1 ∨ φ2 ∨ · · · ∨ φn.

• ∧n
i=1 φi stands for φ1 ∧ φ2 ∧ · · · ∧ φn.

Implications: φ1 ⇒ φ2 is a shorthand for ¬φ1 ∨ φ2.

Biconditionals: φ1 ⇔ φ2 is a shorthand for

(φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1).

aGeorge Boole (1815–1864) in 1847.
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Truth Assignments

• A truth assignment T is a mapping from boolean
variables to truth values true and false.

• A truth assignment is appropriate to boolean
expression φ if it defines the truth value for every
variable in φ.

– {x1 = true, x2 = false} is appropriate to x1 ∨ x2.

– {x2 = true, x3 = false} is not appropriate to
x1 ∨ x2.
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Satisfaction

• T |= φ means boolean expression φ is true under T ; in
other words, T satisfies φ.

• φ1 and φ2 are equivalent, written

φ1 ≡ φ2,

if for any truth assignment T appropriate to both of
them, T |= φ1 if and only if T |= φ2.
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Truth Tables

• Suppose φ has n boolean variables.

• A truth table contains 2n rows.

• Each row corresponds to one truth assignment of the n

variables and records the truth value of φ under that
truth assignment.

• A truth table can be used to prove if two boolean
expressions are equivalent.

– Just check if they give identical truth values under all
appropriate truth assignments.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 145



A Truth Table

p q p ∧ q

0 0 0

0 1 0

1 0 0

1 1 1
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De Morgan’sa Laws

• De Morgan’s laws say that

¬(φ1 ∧ φ2) ≡ ¬φ1 ∨ ¬φ2,

¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2.

• Here is a proof of the first law:

φ1 φ2 ¬(φ1 ∧ φ2) ¬φ1 ∨ ¬φ2

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

aAugustus DeMorgan (1806–1871).
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Conjunctive Normal Forms

• A boolean expression φ is in conjunctive normal
form (CNF) if

φ =
n∧

i=1

Ci,

where each clause Ci is the disjunction of zero or more
literals.a

– For example,

(x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (x2 ∨ x3).

• Convention: An empty CNF is satisfiable, but a CNF
containing an empty clause is not.

aImproved by Mr. Aufbu Huang (R95922070) on October 5, 2006.
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Disjunctive Normal Forms

• A boolean expression φ is in disjunctive normal form
(DNF) if

φ =
n∨

i=1

Di,

where each implicant Di is the conjunction of one or
more literals.

– For example,

(x1 ∧ x2) ∨ (x1 ∧ ¬x2) ∨ (x2 ∧ x3).
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Any Expression φ Can Be Converted into CNFs and DNFs

φ = xj:

• This is trivially true.

φ = ¬φ1 and a CNF is sought:

• Turn φ1 into a DNF.

• Apply de Morgan’s laws to make a CNF for φ.

φ = ¬φ1 and a DNF is sought:

• Turn φ1 into a CNF.

• Apply de Morgan’s laws to make a DNF for φ.
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Any Expression φ Can Be Converted into CNFs and DNFs

(continued)

φ = φ1 ∨ φ2 and a DNF is sought:

• Make φ1 and φ2 DNFs.

φ = φ1 ∨ φ2 and a CNF is sought:

• Turn φ1 and φ2 into CNFs,a

φ1 =
n1∧

i=1

Ai, φ2 =
n2∧

j=1

Bj .

• Set

φ =
n1∧

i=1

n2∧

j=1

(Ai ∨Bj).

aCorrected by Mr. Chun-Jie Yang (R99922150) on November 9, 2010.
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Any Expression φ Can Be Converted into CNFs and DNFs

(concluded)

φ = φ1 ∧ φ2 and a CNF is sought:

• Make φ1 and φ2 CNFs.

φ = φ1 ∧ φ2 and a DNF is sought:

• Turn φ1 and φ2 into DNFs,

φ1 =
n1∨

i=1

Ai, φ2 =
n2∨

j=1

Bj .

• Set

φ =
n1∨

i=1

n2∨

j=1

(Ai ∧Bj).
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An Example: Turn ¬((a ∧ y) ∨ (z ∨ w)) into a DNF

¬((a ∧ y) ∨ (z ∨ w))
¬(CNF∨CNF)

= ¬(((a) ∧ (y)) ∨ ((z ∨ w)))
¬(CNF)

= ¬((a ∨ z ∨ w) ∧ (y ∨ z ∨ w))
de Morgan

= ¬(a ∨ z ∨ w) ∨ ¬(y ∨ z ∨ w)

= (¬a ∧ ¬z ∧ ¬w) ∨ (¬y ∧ ¬z ∧ ¬w).
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Satisfiability

• A boolean expression φ is satisfiable if there is a truth
assignment T appropriate to it such that T |= φ.

• φ is valid or a tautology,a written |= φ, if T |= φ for all
T appropriate to φ.

• φ is unsatisfiable if and only if φ is false under all
appropriate truth assignments if and only if ¬φ is valid.

aWittgenstein (1889–1951) in 1922. Wittgenstein is one of the

most important philosophers of all time. “God has arrived,” the great

economist Keynes (1883–1946) said of him on January 18, 1928. “I met

him on the 5:15 train.” Russell (1919), “The importance of ‘tautology’

for a definition of mathematics was pointed out to me by my former

pupil Ludwig Wittgenstein, who was working on the problem. I do not

know whether he has solved it, or even whether he is alive or dead.”
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Ludwig Wittgenstein (1889–1951)

Wittgenstein (1922), “Whereof one
cannot speak, thereof one must be
silent.”

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 155



satisfiability (sat)

• The length of a boolean expression is the length of the
string encoding it.

• satisfiability (sat): Given a CNF φ, is it satisfiable?

• Solvable in exponential time on a TM by the truth table
method.

• Solvable in polynomial time on an NTM, hence in NP
(p. 87).

• A most important problem in settling the “P ?= NP”
problem (p. 262).
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unsatisfiability (unsat or sat complement)
and validity

• unsat (sat complement): Given a boolean expression
φ, is it unsatisfiable?

• validity: Given a boolean expression φ, is it valid?

– φ is valid if and only if ¬φ is unsatisfiable.

– φ and ¬φ are basically of the same length.

– So unsat and validity have the same complexity.

• Both are solvable in exponential time on a TM by the
truth table method.
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Relations among sat, unsat, and validity

9DOLG 8QVDWLVILDEOH

• The negation of an unsatisfiable expression is a valid
expression.

• None of the three problems—satisfiability,
unsatisfiability, validity—are known to be in P.
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Boolean Functions

• An n-ary boolean function is a function

f : {true, false}n → {true, false}.

• It can be represented by a truth table.

• There are 22n

such boolean functions.

– We can assign true or false to f under each of the
2n truth assignments.
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Boolean Functions (continued)

Assignment Truth value

1 true or false

2 true or false
...

...

2n true or false
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Boolean Functions (continued)

• A boolean expression expresses a boolean function.

– Think of its truth value under all truth assignments.

• A boolean function expresses a boolean expression.

–
∨

T |= φ, literal yi is true in “row” T (y1 ∧ · · · ∧ yn).
∗ y1 ∧ · · · ∧ yn is called the minterm over
{x1, . . . , xn} for T .

– The sizea is ≤ n2n ≤ 22n.
aWe count only the literals here.
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Boolean Functions (continued)

x1 x2 f(x1, x2)

0 0 1

0 1 1

1 0 0

1 1 1

The corresponding boolean expression:

(¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2).
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Boolean Functions (concluded)

Corollary 13 Every n-ary boolean function can be
expressed by a boolean expression of size O(n2n).

• In general, the exponential length in n cannot be
avoided (p. 169).

• The size of the truth table is also O(n2n).
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Boolean Circuits

• A boolean circuit is a graph C whose nodes are the
gates.

• There are no cycles in C.

• All nodes have indegree (number of incoming edges)
equal to 0, 1, or 2.

• Each gate has a sort from

{true, false,∨,∧,¬, x1, x2, . . .}.
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Boolean Circuits (concluded)

• Gates with a sort from {true, false, x1, x2, . . .} are the
inputs of C and have an indegree of zero.

• The output gate(s) has no outgoing edges.

• A boolean circuit computes a boolean function.

• The same boolean function can be computed by
infinitely many boolean circuits.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 165



Boolean Circuits and Expressions

• They are equivalent representations.

• One can construct one from the other:

¬�[L
¬

[L

[L ∨�[M
∨

[L [M

[L ∧�[M
∧

[L [M
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An Example

((x
1
 x
2
) (x

3
x
4
)) (x

3
x
4
))

x
1

x
2
x
3

x
4

• Circuits are more economical because of the possibility
of sharing.
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circuit sat and circuit value

circuit sat: Given a circuit, is there a truth assignment
such that the circuit outputs true?

• circuit sat ∈ NP: Guess a truth assignment and then
evaluate the circuit.

circuit value: The same as circuit sat except that the
circuit has no variable gates.

• circuit value ∈ P: Evaluate the circuit from the input
gates gradually towards the output gate.
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Some Boolean Functions Need Exponential Circuitsa

Theorem 14 (Shannon (1949)) For any n ≥ 2, there is
an n-ary boolean function f such that no boolean circuits
with 2n/(2n) or fewer gates can compute it.

• There are 22n

different n-ary boolean functions (p. 159).

• So it suffices to prove that the number of boolean
circuits with 2n/(2n) or fewer gates is less than 22n

.
aCan be strengthened to “almost all boolean functions . . .”
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The Proof (concluded)

• There are at most ((n + 5)×m2)m boolean circuits with
m or fewer gates (see next page).

• But ((n + 5)×m2)m < 22n

when m = 2n/(2n):

m log2((n + 5)×m2)

= 2n

(
1− log2

4n2

n+5

2n

)

< 2n

for n ≥ 2.
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Claude Elwood Shannon (1916–2001)

Howard Gardner, “[Shannon’s mas-
ter’s thesis is] possibly the most im-
portant, and also the most famous,
master’s thesis of the century.”
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Comments

• The lower bound 2n/(2n) is rather tight because an
upper bound is n2n (p. 161).

• The proof counted the number of circuits.

– Some circuits may not be valid at all.

– Different circuits may also compute the same
function.

• Both are fine because we only need an upper bound on
the number of circuits.

• We do not need to consider the outdoing edges because
they have been counted as incoming edges.
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Relations between Complexity Classes
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Proper (Complexity) Functions

• We say that f : N→ N is a proper (complexity)
function if the following hold:

– f is nondecreasing.

– There is a k-string TM Mf such that
Mf (x) = uf(| x |) for any x.a

– Mf halts after O(|x |+ f(|x |)) steps.

– Mf uses O(f(|x |)) space besides its input x.

• Mf ’s behavior depends only on |x | not x’s contents.

• Mf ’s running time is bounded by f(n).

aThis point will become clear in Proposition 15 (p. 178).
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Examples of Proper Functions

• Most “reasonable” functions are proper: c, dlog ne,
polynomials of n, 2n,

√
n , n!, etc.

• If f and g are proper, then so are f + g, fg, and 2g.

• Nonproper functions when serving as the time bounds
for complexity classes spoil “the theory building.”

– For example, TIME(f(n)) = TIME(2f(n)) for some
recursive function f (the gap theorem).a

• Only proper functions f will be used in TIME(f(n)),
SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

aTrakhtenbrot (1964); Borodin (1972).
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Precise Turing Machines

• A TM M is precise if there are functions f and g such
that for every n ∈ N, for every x of length n, and for
every computation path of M ,

– M halts after precisely f(n) steps, and

– All of its strings are of length precisely g(n) at
halting.

∗ Recall that if M is a TM with input and output,
we exclude the first and the last strings.

• M can be deterministic or nondeterministic.
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Precise TMs Are General

Proposition 15 Suppose a TMa M decides L within time
(space) f(n), where f is proper. Then there is a precise TM
M ′ which decides L in time O(n + f(n)) (space O(f(n)),
respectively).

• M ′ on input x first simulates the TM Mf associated
with the proper function f on x.

• Mf ’s output of length f(|x |) will serve as a “yardstick”
or an “alarm clock.”

• M ′(x) halts when and only when the alarm clock runs
out—even if M halts earlier.

aIt can be deterministic or nondeterministic.
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Important Complexity Classes

• We write expressions like nk to denote the union of all
complexity classes, one for each value of k.

• For example,

NTIME(nk) =
⋃

j>0

NTIME(nj).
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Important Complexity Classes (concluded)

P = TIME(nk),

NP = NTIME(nk),

PSPACE = SPACE(nk),

NPSPACE = NSPACE(nk),

E = TIME(2kn),

EXP = TIME(2nk

),

L = SPACE(log n),

NL = NSPACE(log n).
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