
More Undecidability

• H∗ = {M : M halts on all inputs}.
– Given the question “M ; x ∈ H?” we construct the

following machine:a

Mx(y) : M(x).

– Mx halts on all inputs if and only if M halts on x.

– In other words, Mx ∈ H∗ if and only if M ;x ∈ H.

– So if H∗ were recursive, H would be recursive, a
contradiction.

aSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.

Mx ignores its input y; x is part of Mx’s code but not Mx’s input.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 128

More Undecidability (concluded)

• {M ; x : there is a y such that M(x) = y}.
• {M ; x : the computation M on input x uses all states of M}.

• {M ; x; y : M(x) = y}.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 129

Complements of Recursive Languages

Lemma 9 If L is recursive, then so is L̄.

• Let L be decided by M (which is deterministic).

• Swap the “yes” state and the “no” state of M .

• The new machine decides L̄.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 130

Recursive and Recursively Enumerable Languages

Lemma 10 L is recursive if and only if both L and L̄ are
recursively enumerable.

• Suppose both L and L̄ are recursively enumerable,
accepted by M and M̄ , respectively.

• Simulate M and M̄ in an interleaved fashion.

• If M accepts, then x ∈ L and M ′ halts on state “yes.”

• If M̄ accepts, then x 6∈ L and M ′ halts on state “no.”

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 131

A Very Useful Corollary and Its Consequences

Corollary 11 L is recursively enumerable but not recursive,
then L̄ is not recursively enumerable.

• Suppose L̄ is recursively enumerable.

• Then both L and L̄ are recursively enumerable.

• By Lemma 10 (p. 131), L is recursive, a contradiction.

Corollary 12 H̄ is not recursively enumerable.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 132

R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are
recursively enumerable (note that coRE is not RE).

• coRE = {L : L ∈ RE }.
• RE = {L : L 6∈ RE }.

R: The set of all recursive languages.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 133

R, RE, and coRE (concluded)

• R = RE ∩ coRE (p. 131).

• There exist languages in RE but not in R and not in
coRE.

– Such as H (p. 120, p. 121, and p. 132).

• There are languages in coRE but not in RE.

– Such as H̄ (p. 132).

• There are languages in neither RE nor coRE.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 134

R

coRE
RE

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 135

Undecidability in Logic and Mathematics

• First-order logic is undecidable (answer to Hilbert’s
(1928) “Entscheidungsproblem”).a

• Natural numbers with addition and multiplication is
undecidable.b

• Rational numbers with addition and multiplication is
undecidable.c

aChurch (1936).
bRosser (1937).
cRobinson (1948).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 136

Undecidability in Logic and Mathematics (concluded)

• Natural numbers with addition and equality is decidable
and complete.a

• Elementary theory of groups is undecidable.b

aPresburger’s Master’s thesis (1928), his only work in logic. The

direction was suggested by Tarski. Mojz̄esz Presburger (1904–1943) died

in a concentration camp during World War II.
bTarski (1949).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 137

Julia Hall Bowman Robinson (1919–1985)

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 138

Alfred Tarski (1901–1983)

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 139

Boolean Logic

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 140

It seemed unworthy of a grown man
to spend his time on such trivialities,

but what was I to do?
— Bertrand Russell (1872–1970),

Autobiography, Vol. I

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 141

Boolean Logica

Boolean variables: x1, x2,

Literals: xi, ¬xi.

Boolean connectives: ∨,∧,¬.

Boolean expressions: Boolean variables, ¬φ (negation),

φ1 ∨ φ2 (disjunction), φ1 ∧ φ2 (conjunction).

• ∨n
i=1 φi stands for φ1 ∨ φ2 ∨ · · · ∨ φn.

• ∧n
i=1 φi stands for φ1 ∧ φ2 ∧ · · · ∧ φn.

Implications: φ1 ⇒ φ2 is a shorthand for ¬φ1 ∨ φ2.

Biconditionals: φ1 ⇔ φ2 is a shorthand for

(φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1).

aGeorge Boole (1815–1864) in 1847.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 142

Truth Assignments

• A truth assignment T is a mapping from boolean
variables to truth values true and false.

• A truth assignment is appropriate to boolean
expression φ if it defines the truth value for every
variable in φ.

– {x1 = true, x2 = false} is appropriate to x1 ∨ x2.

– {x2 = true, x3 = false} is not appropriate to
x1 ∨ x2.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 143

Satisfaction

• T |= φ means boolean expression φ is true under T ; in
other words, T satisfies φ.

• φ1 and φ2 are equivalent, written

φ1 ≡ φ2,

if for any truth assignment T appropriate to both of
them, T |= φ1 if and only if T |= φ2.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 144

Truth Tables

• Suppose φ has n boolean variables.

• A truth table contains 2n rows.

• Each row corresponds to one truth assignment of the n

variables and records the truth value of φ under that
truth assignment.

• A truth table can be used to prove if two boolean
expressions are equivalent.

– Just check if they give identical truth values under all
appropriate truth assignments.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 145

A Truth Table

p q p ∧ q

0 0 0

0 1 0

1 0 0

1 1 1

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 146

De Morgan’sa Laws

• De Morgan’s laws say that

¬(φ1 ∧ φ2) ≡ ¬φ1 ∨ ¬φ2,

¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2.

• Here is a proof of the first law:

φ1 φ2 ¬(φ1 ∧ φ2) ¬φ1 ∨ ¬φ2

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

aAugustus DeMorgan (1806–1871).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 147

Conjunctive Normal Forms

• A boolean expression φ is in conjunctive normal
form (CNF) if

φ =
n∧

i=1

Ci,

where each clause Ci is the disjunction of zero or more
literals.a

– For example,

(x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (x2 ∨ x3).

• Convention: An empty CNF is satisfiable, but a CNF
containing an empty clause is not.

aImproved by Mr. Aufbu Huang (R95922070) on October 5, 2006.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 148

Disjunctive Normal Forms

• A boolean expression φ is in disjunctive normal form
(DNF) if

φ =
n∨

i=1

Di,

where each implicant Di is the conjunction of one or
more literals.

– For example,

(x1 ∧ x2) ∨ (x1 ∧ ¬x2) ∨ (x2 ∧ x3).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 149

Any Expression φ Can Be Converted into CNFs and DNFs

φ = xj:

• This is trivially true.

φ = ¬φ1 and a CNF is sought:

• Turn φ1 into a DNF.

• Apply de Morgan’s laws to make a CNF for φ.

φ = ¬φ1 and a DNF is sought:

• Turn φ1 into a CNF.

• Apply de Morgan’s laws to make a DNF for φ.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 150

Any Expression φ Can Be Converted into CNFs and DNFs

(continued)

φ = φ1 ∨ φ2 and a DNF is sought:

• Make φ1 and φ2 DNFs.

φ = φ1 ∨ φ2 and a CNF is sought:

• Turn φ1 and φ2 into CNFs,a

φ1 =
n1∧

i=1

Ai, φ2 =
n2∧

j=1

Bj .

• Set

φ =
n1∧

i=1

n2∧

j=1

(Ai ∨Bj).

aCorrected by Mr. Chun-Jie Yang (R99922150) on November 9, 2010.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 151

Any Expression φ Can Be Converted into CNFs and DNFs

(concluded)

φ = φ1 ∧ φ2 and a CNF is sought:

• Make φ1 and φ2 CNFs.

φ = φ1 ∧ φ2 and a DNF is sought:

• Turn φ1 and φ2 into DNFs,

φ1 =
n1∨

i=1

Ai, φ2 =
n2∨

j=1

Bj .

• Set

φ =
n1∨

i=1

n2∨

j=1

(Ai ∧Bj).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 152

An Example: Turn ¬((a ∧ y) ∨ (z ∨ w)) into a DNF

¬((a ∧ y) ∨ (z ∨ w))
¬(CNF∨CNF)

= ¬(((a) ∧ (y)) ∨ ((z ∨ w)))
¬(CNF)

= ¬((a ∨ z ∨ w) ∧ (y ∨ z ∨ w))
de Morgan

= ¬(a ∨ z ∨ w) ∨ ¬(y ∨ z ∨ w)

= (¬a ∧ ¬z ∧ ¬w) ∨ (¬y ∧ ¬z ∧ ¬w).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 153

Satisfiability

• A boolean expression φ is satisfiable if there is a truth
assignment T appropriate to it such that T |= φ.

• φ is valid or a tautology,a written |= φ, if T |= φ for all
T appropriate to φ.

• φ is unsatisfiable if and only if φ is false under all
appropriate truth assignments if and only if ¬φ is valid.

aWittgenstein (1889–1951) in 1922. Wittgenstein is one of the

most important philosophers of all time. “God has arrived,” the great

economist Keynes (1883–1946) said of him on January 18, 1928. “I met

him on the 5:15 train.” Russell (1919), “The importance of ‘tautology’

for a definition of mathematics was pointed out to me by my former

pupil Ludwig Wittgenstein, who was working on the problem. I do not

know whether he has solved it, or even whether he is alive or dead.”

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 154

Ludwig Wittgenstein (1889–1951)

Wittgenstein (1922), “Whereof one
cannot speak, thereof one must be
silent.”

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 155

satisfiability (sat)

• The length of a boolean expression is the length of the
string encoding it.

• satisfiability (sat): Given a CNF φ, is it satisfiable?

• Solvable in exponential time on a TM by the truth table
method.

• Solvable in polynomial time on an NTM, hence in NP
(p. 87).

• A most important problem in settling the “P ?= NP”
problem (p. 262).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 156

unsatisfiability (unsat or sat complement)
and validity

• unsat (sat complement): Given a boolean expression
φ, is it unsatisfiable?

• validity: Given a boolean expression φ, is it valid?

– φ is valid if and only if ¬φ is unsatisfiable.

– φ and ¬φ are basically of the same length.

– So unsat and validity have the same complexity.

• Both are solvable in exponential time on a TM by the
truth table method.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 157

Relations among sat, unsat, and validity

9DOLG 8QVDWLVILDEOH

• The negation of an unsatisfiable expression is a valid
expression.

• None of the three problems—satisfiability,
unsatisfiability, validity—are known to be in P.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 158

Boolean Functions

• An n-ary boolean function is a function

f : {true, false}n → {true, false}.

• It can be represented by a truth table.

• There are 22n

such boolean functions.

– We can assign true or false to f under each of the
2n truth assignments.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 159

Boolean Functions (continued)

Assignment Truth value

1 true or false

2 true or false
...

...

2n true or false

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 160

Boolean Functions (continued)

• A boolean expression expresses a boolean function.

– Think of its truth value under all truth assignments.

• A boolean function expresses a boolean expression.

–
∨

T |= φ, literal yi is true in “row” T (y1 ∧ · · · ∧ yn).
∗ y1 ∧ · · · ∧ yn is called the minterm over
{x1, . . . , xn} for T .

– The sizea is ≤ n2n ≤ 22n.
aWe count only the literals here.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 161

Boolean Functions (continued)

x1 x2 f(x1, x2)

0 0 1

0 1 1

1 0 0

1 1 1

The corresponding boolean expression:

(¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 162

Boolean Functions (concluded)

Corollary 13 Every n-ary boolean function can be
expressed by a boolean expression of size O(n2n).

• In general, the exponential length in n cannot be
avoided (p. 169).

• The size of the truth table is also O(n2n).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 163

Boolean Circuits

• A boolean circuit is a graph C whose nodes are the
gates.

• There are no cycles in C.

• All nodes have indegree (number of incoming edges)
equal to 0, 1, or 2.

• Each gate has a sort from

{true, false,∨,∧,¬, x1, x2, . . .}.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 164

Boolean Circuits (concluded)

• Gates with a sort from {true, false, x1, x2, . . .} are the
inputs of C and have an indegree of zero.

• The output gate(s) has no outgoing edges.

• A boolean circuit computes a boolean function.

• The same boolean function can be computed by
infinitely many boolean circuits.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 165

Boolean Circuits and Expressions

• They are equivalent representations.

• One can construct one from the other:

¬�[L
¬

[L

[L ∨�[M
∨

[L [M

[L ∧�[M
∧

[L [M

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 166

An Example

((x
1
 x
2
) (x

3
x
4
)) (x

3
x
4
))

x
1

x
2
x
3

x
4

• Circuits are more economical because of the possibility
of sharing.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 167

circuit sat and circuit value

circuit sat: Given a circuit, is there a truth assignment
such that the circuit outputs true?

• circuit sat ∈ NP: Guess a truth assignment and then
evaluate the circuit.

circuit value: The same as circuit sat except that the
circuit has no variable gates.

• circuit value ∈ P: Evaluate the circuit from the input
gates gradually towards the output gate.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 168

Some Boolean Functions Need Exponential Circuitsa

Theorem 14 (Shannon (1949)) For any n ≥ 2, there is
an n-ary boolean function f such that no boolean circuits
with 2n/(2n) or fewer gates can compute it.

• There are 22n

different n-ary boolean functions (p. 159).

• So it suffices to prove that the number of boolean
circuits with 2n/(2n) or fewer gates is less than 22n

.
aCan be strengthened to “almost all boolean functions . . .”

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 169

The Proof (concluded)

• There are at most ((n + 5)×m2)m boolean circuits with
m or fewer gates (see next page).

• But ((n + 5)×m2)m < 22n

when m = 2n/(2n):

m log2((n + 5)×m2)

= 2n

(
1− log2

4n2

n+5

2n

)

< 2n

for n ≥ 2.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 170

m
 choices

n
+5 choices

m
choices

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 171

Claude Elwood Shannon (1916–2001)

Howard Gardner, “[Shannon’s mas-
ter’s thesis is] possibly the most im-
portant, and also the most famous,
master’s thesis of the century.”

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 172

Comments

• The lower bound 2n/(2n) is rather tight because an
upper bound is n2n (p. 161).

• The proof counted the number of circuits.

– Some circuits may not be valid at all.

– Different circuits may also compute the same
function.

• Both are fine because we only need an upper bound on
the number of circuits.

• We do not need to consider the outdoing edges because
they have been counted as incoming edges.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 173

Relations between Complexity Classes

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 174

Proper (Complexity) Functions

• We say that f : N→ N is a proper (complexity)
function if the following hold:

– f is nondecreasing.

– There is a k-string TM Mf such that
Mf (x) = uf(| x |) for any x.a

– Mf halts after O(|x |+ f(|x |)) steps.

– Mf uses O(f(|x |)) space besides its input x.

• Mf ’s behavior depends only on |x | not x’s contents.

• Mf ’s running time is bounded by f(n).

aThis point will become clear in Proposition 15 (p. 178).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 175

Examples of Proper Functions

• Most “reasonable” functions are proper: c, dlog ne,
polynomials of n, 2n,

√
n , n!, etc.

• If f and g are proper, then so are f + g, fg, and 2g.

• Nonproper functions when serving as the time bounds
for complexity classes spoil “the theory building.”

– For example, TIME(f(n)) = TIME(2f(n)) for some
recursive function f (the gap theorem).a

• Only proper functions f will be used in TIME(f(n)),
SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

aTrakhtenbrot (1964); Borodin (1972).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 176

Precise Turing Machines

• A TM M is precise if there are functions f and g such
that for every n ∈ N, for every x of length n, and for
every computation path of M ,

– M halts after precisely f(n) steps, and

– All of its strings are of length precisely g(n) at
halting.

∗ Recall that if M is a TM with input and output,
we exclude the first and the last strings.

• M can be deterministic or nondeterministic.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 177

Precise TMs Are General

Proposition 15 Suppose a TMa M decides L within time
(space) f(n), where f is proper. Then there is a precise TM
M ′ which decides L in time O(n + f(n)) (space O(f(n)),
respectively).

• M ′ on input x first simulates the TM Mf associated
with the proper function f on x.

• Mf ’s output of length f(|x |) will serve as a “yardstick”
or an “alarm clock.”

• M ′(x) halts when and only when the alarm clock runs
out—even if M halts earlier.

aIt can be deterministic or nondeterministic.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 178

Important Complexity Classes

• We write expressions like nk to denote the union of all
complexity classes, one for each value of k.

• For example,

NTIME(nk) =
⋃

j>0

NTIME(nj).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 179

Important Complexity Classes (concluded)

P = TIME(nk),

NP = NTIME(nk),

PSPACE = SPACE(nk),

NPSPACE = NSPACE(nk),

E = TIME(2kn),

EXP = TIME(2nk

),

L = SPACE(log n),

NL = NSPACE(log n).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 180

