
Time Complexity under Nondeterminism

• Nondeterministic machine N decides L in time f(n),
where f : N→ N, if

– N decides L, and

– for any x ∈ Σ∗, N does not have a computation path
longer than f(|x |).

• We charge only the “depth” of the computation tree.
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Time Complexity Classes under Nondeterminism

• NTIME(f(n)) is the set of languages decided by NTMs
within time f(n).

• NTIME(f(n)) is a complexity class.
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NP

• Define
NP =

⋃

k>0

NTIME(nk).

• Clearly P ⊆ NP.

• Think of NP as efficiently verifiable problems.

– Boolean satisfiability (p. 87 and p. 154).

• The most important open problem in computer science
is whether P = NP.
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Simulating Nondeterministic TMs

Surprisingly, nondeterminism does not add power to TMs.

Theorem 4 Suppose language L is decided by an NTM N

in time f(n). Then it is decided by a 3-string deterministic
TM M in time O(cf(n)), where c > 1 is some constant
depending on N .

• On input x, M goes down every computation path of N

using depth-first search.

– M does not need to know f(n).

– As N is time-bounded, the depth-first search will not
run indefinitely.
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The Proof (concluded)

• If some path leads to “yes,” then M enters the “yes”
state.

• If none of the paths leads to “yes,” then M enters the
“no” state.

• Note that every path has a finite length by definition.

Corollary 5 NTIME(f(n))) ⊆ ⋃
c>1 TIME(cf(n)).
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NTIME vs. TIME

• Does converting an NTM into a TM require exploring
all of the computation paths of the NTM as done in
Theorem 4 (p. 84)?

• This is the most important question in theory with
practical implications.
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A Nondeterministic Algorithm for Satisfiability

φ is a boolean formula with n variables.

1: for i = 1, 2, . . . , n do
2: Guess xi ∈ {0, 1}; {Nondeterministic choice.}
3: end for
4: {Verification:}
5: if φ(x1, x2, . . . , xn) = 1 then
6: “yes”;
7: else
8: “no”;
9: end if
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The Schematic Computation Tree for Satisfiability
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Analysis

• The algorithm decides language {φ : φ is satisfiable}.
– The computation tree is a complete binary tree of

depth n.

– Every computation path corresponds to a particular
truth assignment out of 2n.

– φ is satisfiable iff there is a truth assignment that
satisfies φ.

– But there is a truth assignment that satisfies φ iff
there is a computation path that results in “yes.”

• General paradigm: Guess a “proof” and then verify it.
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The Traveling Salesman Problem

• We are given n cities 1, 2, . . . , n and integer distance dij

between any two cities i and j.

• Assume dij = dji for convenience.

• The traveling salesman problem (tsp) asks for the
total distance of the shortest tour of the cities.

• The decision version tsp (d) asks if there is a tour with
a total distance at most B, where B is an input.

• Both problems are extremely important and are equally
hard (p. 333 and p. 428).
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A Nondeterministic Algorithm for tsp (d)
1: for i = 1, 2, . . . , n do

2: Guess xi ∈ {1, 2, . . . , n}; {The ith city.}a
3: end for

4: xn+1 := x1;

5: {Verification stage:}
6: if x1, x2, . . . , xn are distinct and

∑n
i=1 dxi,xi+1 ≤ B then

7: “yes”;

8: else

9: “no”;

10: end if

aCan be made into a series of log2 n binary choices for each xi so

that the next-state count (2) is a constant, independent of input size.

Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.
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Analysis

• Suppose the input graph contains at least one tour of
the cities with a total distance at most B.

• Then there is a computation path that leads to “yes.”a

• Suppose the input graph contains no tour of the cities
with a total distance at most B.

• Then every computation path leads to “no.”
aIt does not mean the algorithm will follow that path. It just means

such a computation path exists.
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Remarksa on P
?
= NP

• Verification of password is easy (so it is in NP).

– A computer should not take a long time to let a user
log in.

• A password system should be hard to crack (loosely
speaking, cracking it should not be in P).

• Many practical applications depend on answers to the
P ?= NP question.

aContributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on

September 27, 2011.
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Nondeterministic Space Complexity Classes

• Let L be a language.

• Then
L ∈ NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).

• NSPACE(f(n)) is a set of languages.

• As in the linear speedup theorem (Theorem 3 on p. 64),
constant coefficients do not matter.
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Graph Reachability

• Let G(V, E) be a directed graph (digraph).

• reachability asks if, given nodes a and b, does G

contain a path from a to b?

• Can be easily solved in polynomial time by breadth-first
search.

• How about the nondeterministic space complexity?
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The First Try: NSPACE(n log n)

1: x1 := a; {Assume a 6= b.}
2: for i = 2, 3, . . . , n do
3: Guess xi ∈ {v1, v2, . . . , vn}; {The ith node.}
4: end for
5: for i = 2, 3, . . . , n do
6: if (xi−1, xi) 6∈ E then
7: “no”;
8: end if
9: if xi = b then

10: “yes”;
11: end if
12: end for
13: “no”;

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 96



In Fact reachability ∈ NSPACE(log n)

1: x := a;
2: for i = 2, 3, . . . , n do
3: Guess y ∈ {v1, v2, . . . , vn}; {The next node.}
4: if (x, y) 6∈ E then
5: “no”;
6: end if
7: if y = b then
8: “yes”;
9: end if

10: x := y;
11: end for
12: “no”;
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Space Analysis

• Variables i, x, and y each require O(log n) bits.

• Testing (x, y) ∈ E is accomplished by consulting the
input string with counters of O(log n) bits long.

• Hence
reachability ∈ NSPACE(log n).

– reachability with more than one terminal node
also has the same complexity.

• reachability ∈ P (p. 193).
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Undecidability
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God exists since mathematics is consistent,
and the Devil exists since we cannot prove it.

— André Weil (1906–1998)

Whatsoever we imagine is finite.
Therefore there is no idea, or conception

of any thing we call infinite.
— Thomas Hobbes (1588–1679), Leviathan
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Infinite Sets

• A set is countable if it is finite or if it can be put in
one-one correspondence with N = { 0, 1, . . . }, the set of
natural numbers.

– Set of integers Z.
∗ 0 ↔ 0.
∗ 1 ↔ 1, 2 ↔ 3, 3 ↔ 5, . . ..
∗ −1 ↔ 2,−2 ↔ 4,−3 ↔ 6, . . ..

– Set of positive integers Z+: i− 1 ↔ i.

– Set of odd integers: (i− 1)/2 ↔ i.

– Set of rational numbers: See next page.

– Set of squared integers:
√

i ↔ i.
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Rational Numbers Are Countable
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Cardinality

• For any set A, define |A| as A’s cardinality (size).

• Two sets are said to have the same cardinality, or

|A| = |B| or A ∼ B,

if there exists a one-to-one correspondence between their
elements.

• 2A denotes set A’s power set, that is {B : B ⊆ A}.
– E.g., { 0, 1 }’s power set is

2{ 0,1 } = { ∅, { 0 }, { 1 }, { 0, 1 } }.
– If |A| = k, then |2A| = 2k.
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Cardinality (concluded)

• Define |A| ≤ |B| if there is a one-to-one correspondence
between A and a subset of B’s.

• Define |A| < |B| if |A| ≤ |B| but |A| 6= |B|.
• Obviously, if A ⊆ B, then |A| ≤ |B|.
• But if A ( B, then |A| < |B|?
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Cardinality and Infinite Sets

• If A and B are infinite sets, it is possible that A ( B yet
|A| = |B|.
– The set of integers properly contains the set of odd

integers.

– But the set of integers has the same cardinality as
the set of odd integers (p. 101).

• A lot of “paradoxes.”
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Galileo’sa Paradox (1638)

• The squares of the positive integers can be placed in
one-to-one correspondence with all the positive integers.

• This is contrary to the axiom of Euclidb that the whole
is greater than any of its proper parts.

• Resolution of paradoxes: Pick the notion that results in
“better” mathematics.

• The difference between a mathematical paradox and a
contradiction is often a matter of opinions.

aGalileo (1564–1642).
bEuclid (325 B.C.–265 B.C.).
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Hilbert’sa Paradox of the Grand Hotel

• For a hotel with a finite number of rooms with all the
rooms occupied, a new guest will be turned away.

• Now imagine a hotel with an infinite number of rooms,
all of which are occupied.

• A new guest comes and asks for a room.

• “But of course!” exclaims the proprietor.

• He moves the person previously occupying Room 1 to
Room 2, the person from Room 2 to Room 3, and so on.

• The new customer now occupies Room 1.
aDavid Hilbert (1862–1943).
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Hilbert’s Paradox of the Grand Hotel (concluded)

• Now imagine a hotel with an infinite number of rooms,
all taken up.

• An infinite number of new guests come in and ask for
rooms.

• “Certainly,” says the proprietor.

• He moves the occupant of Room 1 to Room 2, the
occupant of Room 2 to Room 4, and so on.

• Now all odd-numbered rooms become free and the
infinity of new guests can be accommodated in them.

• “There are many rooms in my Father’s house, and I am
going to prepare a place for you.” (John 14:3)
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David Hilbert (1862–1943)
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Cantor’s Theorem

Theorem 6 The set of all subsets of N (2N) is infinite and
not countable.

• Suppose (2N) is countable with f : N→ 2N being a
bijection.a

• Consider the set B = {k ∈ N : k 6∈ f(k)} ⊆ N.

• Suppose B = f(n) for some n ∈ N.

aNote that f(k) is a subset of N.
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The Proof (concluded)

• If n ∈ f(n) = B, then n ∈ B, but then n 6∈ B by B’s
definition.

• If n 6∈ f(n) = B, then n 6∈ B, but then n ∈ B by B’s
definition.

• Hence B 6= f(n) for any n.

• f is not a bijection, a contradiction.
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Georg Cantor (1845–1918)

Kac and Ulam, “[If] one had
to name a single person whose
work has had the most decisive
influence on the present spirit
of mathematics, it would almost
surely be Georg Cantor.”
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Cantor’s Diagonalization Argument Illustrated

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

B

1 2 3 4 5 6
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A Corollary of Cantor’s Theorem

Corollary 7 For any set T , finite or infinite,

|T | < | 2T |.

• The inequality holds in the finite T case as k < 2k.

• Assume T is infinite now.

• To prove |T | ≤ |2T |, simply consider f(x) = {x} ∈ 2T .

– f maps a member of T = { a, b, c, . . . } to a
corresponding member of { { a }, { b }, { c }, . . . } ⊆ 2T .

• To prove the strict inequality |T | � |2T |, we use the
same argument as Cantor’s theorem.
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A Second Corollary of Cantor’s Theorem

Corollary 8 The set of all functions on N is not countable.

• It suffices to prove it for functions from N to {0, 1}.
• Every function f : N→ {0, 1} determines a subset of N:

{n : f(n) = 1} ⊆ N,

and vice versa.

• So the set of functions from N to {0, 1} has cardinality
| 2N |.

• Corollary 7 (p. 114) then implies the claim.
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Existence of Uncomputable Problems

• Every program is a finite sequence of 0s and 1s, thus a
nonnegative integer.a

• Hence every program corresponds to some integer.

• The set of programs is countable.
aDifferent binary strings may be mapped to the same integer (e.g.,

“001” and “01”). To prevent it, use the lexicographic order as the map-

ping or simply insert “1” as the most significant bit of the binary string

before the mapping (so “001” becomes “1001”). Contributed by Mr.

Yu-Chih Tung (R98922167) on October 5, 2010.
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Existence of Uncomputable Problems (concluded)

• A function is a mapping from integers to integers.

• The set of functions is not countable by Corollary 8
(p. 115).

• So there are functions for which no programs exist.a

aAs a nondeterministic program may not compute a function, we

consider only deterministic programs for this sentence. Contributed by

Mr. Patrick Will (A99725101) on October 5, 2010.
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Universal Turing Machinea

• A universal Turing machine U interprets the input
as the description of a TM M concatenated with the
description of an input to that machine, x.

– Both M and x are over the alphabet of U .

• U simulates M on x so that

U(M ;x) = M(x).

• U is like a modern computer, which executes any valid
machine code, or a Java Virtual machine, which
executes any valid bytecode.

aTuring (1936).
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The Halting Problem

• Undecidable problems are problems that have no
algorithms or languages that are not recursive.

• We knew undecidable problems exist (p. 116).

• We now define a concrete undecidable problem, the
halting problem:

H = {M ; x : M(x) 6=↗}.

– Does M halt on input x?
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H Is Recursively Enumerable

• Use the universal TM U to simulate M on x.

• When M is about to halt, U enters a “yes” state.

• If M(x) diverges, so does U .

• This TM accepts H.

– E.g., membership of x in a recursively enumerative
language accepted by M can be answered by asking

M ; x ∈ H?
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H Is Not Recursive

• Suppose there is a TM MH that decides H.

• Consider the program D(M) that calls MH :
1: if MH(M ; M) = “yes” then

2: ↗; {Writing an infinite loop is easy, right?}
3: else

4: “yes”;

5: end if

• Consider D(D):

– D(D) =↗⇒ MH(D; D) = “yes” ⇒ D; D ∈ H ⇒
D(D) 6=↗, a contradiction.

– D(D) = “yes” ⇒ MH(D; D) = “no” ⇒ D; D 6∈ H ⇒
D(D) =↗, a contradiction.
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Comments

• Two levels of interpretations of M :

– A sequence of 0s and 1s (data).

– An encoding of instructions (programs).

• There are no paradoxes.

– Concepts should be familiar to computer scientists.

– Feed a C compiler to a C compiler, a Lisp interpreter
to a Lisp interpreter, etc.
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Self-Loop Paradoxes

Cantor’s Paradox (1899): Let T be the set of all sets.a

• Then 2T ⊆ T because 2T is a set.

• But we knowb | 2T | > |T | (p. 114)!

• We got a “contradiction.”

• So what gives?

• Are we willing to give up Cantor’s theorem?

• If not, what is a set?
aRecall this ontological argument for the existence of God by

St Anselm (–1109) in the 11th century: If something is possible but is

not part of God, then God is not the greatest possible object of thought,

a contradiction.
bReally?
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Self-Loop Paradoxes (continued)

Russell’s Paradox (1901): Consider R = {A : A 6∈ A}.
• If R ∈ R, then R 6∈ R by definition.

• If R 6∈ R, then R ∈ R also by definition.

• In either case, we have a “contradiction.”

Eubulides: The Cretan says, “All Cretans are liars.”

Liar’s Paradox: “This sentence is false.”

Hypochondriac: a patient (like Gödel) with imaginary
symptoms and ailments.
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Self-Loop Paradoxes (concluded)

Sharon Stone in The Specialist (1994): “I’m not a
woman you can trust.”

Spin City (1996–2002): “I am not gay, but my boyfriend
is.”

Numbers 12:3, Old Testament: “Moses was the most
humble person in all the world [· · · ]” (attributed to
Moses).
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Bertrand Russell (1872–1970)
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Reductions in Proving Undecidability

• Suppose we are asked to prove L is undecidable.

• Language H is known to be undecidable.

• We then try to find a computable transformation (called
reduction) R such thata

∀x {R(x) ∈ L if and only if x ∈ H}.

• Now we can answer “x ∈ H?” for any x by asking
“R(x) ∈ L?” instead.

• If L were decidable, H would be decidable, a
contradiction!

• So L must be undecidable.
aContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.
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