Acceptability and Recursively Enumerable Languages

e Let L C (X —{||})* be a language.

e Let M be a TM such that for any string x:
— If x € L, then M(x) = “yes.”
— If x ¢ L, then M(x) =2

e We say M accepts L.

aThis part is different from recursive languages.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 36

Acceptability and Recursively Enumerable Languages
(concluded)

e If L is accepted by some TM, then L is called a

recursively enumerable language.?

— A recursively enumerable language can be generated

by a TM, thus the name.P

— That is, there is an algorithm such that for every
x € L, it will be printed out eventually.

— This algorithm may not terminate.

2Post (1944).
PThanks to a lively class discussion on September 20, 2011.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 37

Emil Post (1897-1954)

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 38

Recursive and Recursively Enumerable Languages

Proposition 1 If L is recursive, then it is recursively

enumerable.
e Let TM M decide L.
Need to design a TM that accepts L.
We will modify M to obtain an M’ that accepts L.

M’ is identical to M except that when M is about to
halt with a “no” state, M’ goes into an infinite loop.
M’ accepts L.

— If x € L, then M'(x) = M(x) = “yes.”

— If x &€ L, then M(x) = “no” and so M'(z) =.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 39

Recursively Enumerable Languages: Examples

e The set of C program-input pairs that do not run into

an infinite loop is recursively enumerable.

— Just run it in a simulator environment.

e The set of C programs that contain an infinite loop is
not recursively enumerable (see p. 120).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 40

Turing-Computable Functions

o Let f: (X —{|})" — X"

— Optimization problems, root finding problems, etc.
e Let M be a TM with alphabet ..

e M computes [if for any string z € (3 — {| |})*,
M(z) = f(a)

e We call f a recursive function® if such an M exists.

2Kurt Godel (1931).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 41

Kurt Godel (1906-1978)

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 42

Church’s Thesis or the Church-Turing Thesis

e What is computable is Turing-computable; TMs are

algorithms.?®

Many other computation models have been proposed.

— Recursive function (Godel), A calculus (Church),
formal language (Post), assembly language-like RAM
(Shepherdson & Sturgis), boolean circuits (Shannon),
extensions of the Turing machine (more strings,

two-dimensional strings, and so on), etc.

e All have been proved to be equivalent.

2Kleene (1953).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 43

Church’s Thesis or the Church-Turing Thesis
(concluded)

e No “intuitively computable” problems have been shown
not to be Turing-computable, yet.

The thesis is?

a profound claim about the physical laws of our
universe, i.e.: any physical system that purports
to be a computer is not capable of any
computational task that a Turing machine is

incapable of.

®Warren Smith (1998).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 44

Alonso Church (1903-1995)

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 45

Stephen Kleene (1909-1994)

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 46

Extended Church’s Thesis?

e All “reasonably succinct encodings” of problems are

polynomially related (e.g., n? vs. n%).

— Representations of a graph as an adjacency matrix
and as a linked list are both succinct.

— The unary representation of numbers is not succinct.

— The binary representation of numbers is succinct.
x 1001 vs. 111111111.

e All numbers for TMs will be binary from now on.

Y

aSome call it “polynomial Church’s thesis,” which Lészlé Lovasz at-

tributed to Leonid Levin.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 47

Turing Machines with Multiple Strings

A k-string Turing machine (TM) is a quadruple
M = (K,%,6,s).

K., >, s are as before.

§: K x¥k — (KU{h, “yes”, “no”}) x (X x {«, —, —})*.

All strings start with a >.
The first string contains the input.
Decidability and acceptability are the same as before.

When TMs compute functions, the output is on the last
(kth) string.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 48

A 2-String TM

'

>1000110000111001110001110010l

v

111110000 LLULLLLLUULUULUUUL

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 49

PALINDROME Revisited

e A 2-string TM can decide PALINDROME in O(n) steps.

— It copies the input to the second string.

The cursor of the first string is positioned at the first
symbol of the input.

The cursor of the second string is positioned at the
last symbol of the input.

The two cursors are then moved in opposite
directions until the ends are reached.

The machine accepts if and only if the symbols under
the two cursors are identical at all steps.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 50

'

>ababbaabbaabbaabbabaliiu

v
>ababbaabbaabbaabbabauul

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 51

Configurations and Yielding

e The concept of configuration and yielding is the same as

before except that a configuration is a (2k 4 1)-tuple

(Q7w17u17w27u27 .. ,’UJk;,’U/k).

— w;u; 1s the ith string.
— The ith cursor is reading the last symbol of w;.

— Recall that > is each w;’s first symbol.

e The k-string TM’s initial configuration is

2

(s,>>,x, >, €, >, €6,...,>,€).
N~ NN
1 2 3 k

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 52

Time Complexity

The multistring TM is the basis of our notion of the
time expended by TMs.

If a k-string TM M halts after ¢t steps on input z, then
the time required by M on input x is t.

If M(x) =", then the time required by M on x is co.

Machine M operates within time f(n) for f : N — N
if for any input string x, the time required by M on x is
at most f(|x|).

— | x| is the length of string x.

Function f(n) is a time bound for M.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 53

Time Complexity Classes?

Suppose language L C (3 — {| |})* is decided by a
multistring TM operating in time f(n).

We say L € TIME(f(n)).
TIME(f(n)) is the set of languages decided by TMs

with multiple strings operating within time bound f(n).

TIME(f(n)) is a complexity class.
— PALINDROME is in TIME(f(n)), where f(n)

2Hartmanis and Stearns (1965); Hartmanis, Lewis, and Stearns
(1965).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 54

Juris Hartmanis* (1928-)

2Turing Award (1993).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 55

Richard Edwin Stearns® (1936-)

2Turing Award (1993).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 56

The Simulation Technique

Theorem 2 Given any k-string M operating within time
f(n), there exists a (single-string) M’ operating within time
O(f(n)?) such that M(x) = M'(z) for any input .

e The single string of M’ implements the k strings of M.

e Represent configuration (q, w1, w1, wo, us, ..., wg, u) of
M by this string of M’:
(g, >wiuy < whug < -+ < wiug < <).

— < is a special delimiter.
— w! is w; with the first* and last symbols “primed.”

— It serves the purpose of “,” before.

3The first symbol is always [>.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 57

The Proof (continued)

The “priming” of the last symbol of w; ensures that M’

knows which symbol is under each cursor of M.?

We use the primed version of the first symbol of w; (so

> becomes >').
— TM cursors are not allowed to move to the left of >

(p- 20).

— Now the cursor of M’ can move between the

simulated strings of M.P

2Added because of comments made by Mr. Che-Wei Chang

(R95922093) on September 27, 2006.
PThanks to a lively discussion on September 22, 2009.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 58

The Proof (continued)

e The initial configuration of M’ is

k — 1 pairs

N\

(s,>5" 2" < " 9<).

— > is double-primed because it is the beginning and
the ending symbol here.?

2Added after the class discussion on September 20, 2011.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 59

The Proof (continued)

e We simulate each move of M thus:

1. M’ scans the string to pick up the k£ symbols under
the cursors.
— The states of M’ must be enlarged to include

K x YF to remember them.
— The transition functions of M’ must also reflect it.

2. M’ then changes the string to reflect the overwriting

of symbols and cursor movements of M.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 60

The Proof (continued)

It is possible that some strings of M need to be
lengthened (see next page).

— The linear-time algorithm on p. 31 can be used for
each such string.

The simulation continues until M halts.
M’ then erases all strings of M except the last one.

Since M halts within time f(|z|), none of its strings

ever becomes longer than f(|x|).?

e The length of the string of M’ at any time is O(kf(| z|)).

2We tacitly assume f(n) > n.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 61

string 3 | string 4

string 3 I string 4

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 62

The Proof (concluded)

e Simulating each step of M takes, per string of M,
O(kf(lz])) steps.
— O(f(|x|)) steps to collect information from this
string.
— O(kf(|z])) steps to write and, if needed, to lengthen
the string.

o M’ takes O(k?f(|x])) steps to simulate each step of M

because there are k strings.

e As there are f(|x|) steps of M to simulate, M’ operates
within time O(k2f (| x])?).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 63

Linear Speedup?

Theorem 3 Let L € TIME(f(n)). Then for any € > 0,
L € TIME(f'(n)), where f'(n) =€ef(n) +n+ 2.

2Hartmanis and Stearns (1965).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 64

Implications of the Speedup Theorem

State size can be traded for speed.?

If f(n) = cn with ¢ > 1, then ¢ can be made arbitrarily

close to 1.

If f(n) is superlinear, say f(n) = 14n? + 31n, then the
constant in the leading term (14 in this example) can be

made arbitrarily small.
— Arbitrary linear speedup can be achieved.”

— This justifies the big-O notation for the analysis of
algorithms.

amk . |33k fold increase to gain a speedup of O(m). No free lunch.
bPCan you apply the theorem multiple times to achieve superlinear
speedup? Thanks to a question by a student on September 21, 2010.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 65

P

By the linear speedup theorem, any polynomial time
bound can be represented by its leading term n”* for

some k > 1.

If L is a polynomially decidable language, it is in
TIME(n*) for some k € N.
— Clearly, TIME(n*) C TIME(n**1).

The union of all polynomially decidable languages is
denoted by P:

P = |] TIME(n®).
k>0

P contains problems that can be efficiently solved.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 66

Space Complexity
e Consider a k-string TM M with input x.

e Assume non-| | is never written over by | |.?

— The purpose is not to artificially reduce the space

needs (see below).

e If M halts in configuration
(H, w1, u1,ws,us, ..., W, Uk), then the space required

by M on input z is

k
i=1

2Corrected by Ms. Chuan-Ju Wang (R95922018) on September 27,
2006.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 67

Space Complexity (continued)

e Suppose we do not charge the space used only for input

and output.
e Let £ > 2 be an integer.
e A k-string Turing machine with input and output
is a k-string TM that satisfies the following conditions.
The input string is read-only.
The last string, the output string, is write-only.
So the cursor never moves to the left.

The cursor of the input string does not wander off
into the | |s.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 68

Space Complexity (concluded)

e If M is a TM with input and output, then the space
required by M on input x is

k—1

1=2

e Machine M operates within space bound f(n) for
f : N — N if for any input x, the space required by M
on x is at most f(|x|).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 69

Space Complexity Classes

Let L be a language.

Then
L € SPACE(f(n))

if there is a TM with input and output that decides L

and operates within space bound f(n).

SPACE(f(n)) is a set of languages.
— PALINDROME € SPACE(logn).*

As in the linear speedup theorem (Theorem 3), constant

coeflicients do not matter.

2Keep 3 counters.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 70

Nondeterminism?

¢ A nondeterministic Turing machine (NTM) is a
quadruple N = (K, 3, A, s).

e K > s are as before.

e AC K XXX (KU{h,“yes”, “no”}) x ¥ x {«,—,—}is

a relation, not a function.P

— For each state-symbol combination, there may be
multiple valid next steps—or none at all.

— Multiple lines of code may be applicable.

2Rabin and Scott (1959).
PCorrected by Mr. Jung-Ying Chen (D95723006) on September 23,
2008.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 71

Nondeterminism (concluded)

e As before, a program contains lines of code:

(Q17017p17p17D1) c A,
<QQ7027p27P27D2) - A,

(Gn> Ons Prs Prs D)) € AL

— In the deterministic case (p. 21), we wrote
0(gi,0i) = (Pis pis Di)-

e A configuration yields another configuration in one step

if there exists a rule in A that makes this happen.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 72

Michael O. Rabin® (1931-)

2Turing Award (1976).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 73

Dana Stewart Scott® (1932-)

aTuring Award (1976).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 74

Computation Tree and Computation Path

A

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 75

Decidability under Nondeterminism

e Let L be a language and N be an NTM.
e N decides L if for any x € X*, x € L if and only if there
is a sequence of valid configurations that ends in “yes.”

— It is not required that the NTM halts in all
computation paths.?

— If z ¢ L, no nondeterministic choices should lead to a
“yes” state.

e The key is the algorithm’s overall behavior not whether
it gives a correct answer for each particular run.

e Determinism is a special case of nondeterminism.

@So “accepts” is a more proper term, and other books use “decides”
only when the NTM always halts.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 76

An Example

e Let L be the set of logical conclusions of a set of axioms.
— Predicates not in L may be false under the axioms.

— They may also be independent of the axioms.

« That is, they can be assumed true or false without

contradicting the axioms.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 77

An Example (concluded)

e Let ¢ be a predicate whose validity we would like to

prove.

e Consider the nondeterministic algorithm:
: b := true;
: while the input predicate ¢ # b do
Generate a logical conclusion of b by applying one
of the axioms; {Nondeterministic choice.}
Assign this conclusion to b;

. end while

L ”

yes

e This algorithm decides L.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 78

Complementing a TM's Halting States

e Let M decide L, and M’ be M after “yes” <> “no”.

e If M is a deterministic TM, then M’ decides L

e But if M is an NTM, then M’ may not decide L.
— It is possible that both M and M’ accept = (see next
page).
— So M and M’ accept languages that are not
complements of each other.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 79

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 80

