Theory of Computation

Final Examination on January 11, 2011 Fall Semester, 2010

Problem 1 (25 points) Let A, B be finite nonempty sets, $f : A \times B \to \{0, 1\}$ and $\sum_{y \in B} f(x, y) < |B|/|A|$ for all $x \in A$. Prove the existence of a $y^* \in B$ with $\sum_{x \in A} f(x, y^*) = 0$. You may want to use the fact

$$\sum_{x \in A} \sum_{y \in B} f(x, y) = \sum_{y \in B} \sum_{x \in A} f(x, y).$$

Ans: As $\sum_{y \in B} f(x, y) < |B|/|A|$ for $x \in A$,

$$\sum_{x \in A} \sum_{y \in B} f(x, y) < \sum_{x \in A} \frac{|B|}{|A|} = |B|.$$
(1)

Suppose for contradiction that

$$\sum_{x \in A} f(x, y) \ge 1$$

for all $y \in B$. Then

$$\sum_{y \in B} \sum_{x \in A} f(x, y) \ge \sum_{y \in B} 1 = |B|,$$

contradicting inequality (1).

Problem 2 (25 points) Does IP contain all languages that have uniformly polynomial circuits?

Ans: Yes. P equals the class of languages with uniformly polynomial circuits. Furthermore, any language in P can be decided by an interactive proof system where the verifier simply decides the language itself and ignores the prover's messages. So $P \subseteq IP$.

Problem 3 (25 points) Show that if $NP \neq coNP$, then $P \neq NP$.

Ans: P is closed under complementation. If P = NP, then NP is closed under complementation. In other words, NP = coNP. This is the contrapositive of the assumption.

Problem 4 (25 points) FP is the set of polynomial-time computable functions. GCD, LCM, matrix-matrix multiplication, etc. are in FP. Let #SAT stand for the problem of calculating the number of satisfying truth assignments to a boolean formula. Show that if #SAT \in FP, then P = NP.

Ans: Given boolean formula ϕ , calculate its number of satisfying truth assignments, k, in polynomial time. Declare " $\phi \in SAT$ " if and only if $k \ge 1$.