
Lengths of Boolean Formulas for the Threshold Functiona

• Define the boolean function Tk(x1, . . . , xn) to be 1 if at

least k of the xi’s are 1s, and 0 otherwise.

• Trivially, a formula of size O(
(
n
k

)
) exists.

– Formula

T3(x1, x2, . . . , xn) =
∨

1≤i<j<k≤n

(xi ∧ xj ∧ xk)

has size
(
n
3

)
= Θ(n3).

• Surprisingly, for any k, there exists a constant ck such

that Tk(x1, . . . , xn) has formula size at most ckn log2 n.

• The construction is again probabilistic, not constructive.

aNechiporuk (1964)?

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 552

Lengths of Boolean Formulas for the Threshold Function (continued)

• We will verify the k = 3 case below.

• Suppose we construct the formula of the form

F = F1 ∨ · · · ∨ Fr.

• Each Fi takes the form:

Fi =

3︷ ︸︸ ︷
(
∨

· · ·) ∧ (
∨

· · ·) ∧ (
∨

· · ·) .

– By the distribution law,

(a1 ∨ a2 ∨ · · ·) ∧ (b1 ∨ b2 ∨ · · ·) ∧ (c1 ∨ c2 ∨ · · ·)

= (a1 ∧ b1 ∧ c1) ∨ (a1 ∧ b1 ∧ c2) ∨ · · · .

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 553

Lengths of Boolean Formulas for the Threshold Function (continued)

• Each xj is placed into one of the pairs of parentheses at

random.

– E.g., Fi = (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4) ∧ (x6 ∨ x7).

• So Fi has exactly n variables.

• The process is repeated for each Fi.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 554

x
j

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 555

Lengths of Boolean Formulas for the Threshold Function (continued)

• Clearly, all the monomials of F are of the form

xa ∧ xb ∧ xc for distinct a, b, c.

– For example, Fi may look like

(x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4) ∧ (x6 ∨ x7)

= (x1 ∧ x2 ∧ x6) ∨ (x1 ∧ x2 ∧ x7)

∨ · · · ∨ (x5 ∧ x4 ∧ x7).

• We know T3 has
(
n
3

)
monomials.

• We shall show, if r is large enough, all
(
n
3

)
monomials

will appear with high probability.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 556

Lengths of Boolean Formulas for the Threshold Function (continued)

• The probability that any given monomial xa ∧ xb ∧ xc

appears in a given Fi is the probability that xa, xb, xc

are thrown into distinct pairs of parentheses.

• The probability is hence equal to (2/3)(1/3) = 2/9.

• The probability that xa ∧ xb ∧ xc is not a monomial of

Fi’s is (7/9)
r.

• Therefore, the probability that at least one of the(
n
3

)
≤ n3 monomials is missing from all the Fi’s is

≤ n3(7/9)r.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 557

Lengths of Boolean Formulas for the Threshold Function (concluded)

• This probability is less than one when n3(7/9)r < 1.

• When this happens, F includes all
(
n
3

)
monomials, and

F has size < rn.

• In particular, with r = − log7/9 2n
3, the probability that

F ̸= T3 is at most 1/2.

• In other words, the probability of that F = T3 is at least

1/2.

• Hence a formula of size O(n log n) exists.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 558

Finding Short Formulas for the Threshold Function

• Our analysis implies an expected polynomial-time

randomized algorithm to find such a formula (for T3).

• Generate F randomly as described.

• In O(
(
n
3

)
) = O(n3) time, evaluate F with every n-bit

truth assignment with three 1’s and check if F = 1.

• In O(
(
n
2

)
) = O(n2) time, evaluate F with every n-bit

truth assignment with two 1’s and check if F = 0.

• In O(n) time, evaluate F with every n-bit truth

assignment with one 1 and check if F = 0.

• Check if F = 0 with the all-0 truth assignment.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 559

Finding Short Formulas for the Threshold Function (concluded)

• If F passes all the tests, return F .

– No need to check if F = 1 when the truth assignment

contains more than three 1’s because F is monotone.a

• Otherwise, repeat the experiment.

• Clearly, the expected running time to find a valid

formula is proportional to

n3 + (1/2)n3 + (1/2)2 n3 + · · · = O(n3).

aThanks to a lively class discussion on December 8, 2009.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 560

Cryptography

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 561

Whoever wishes to keep a secret

must hide the fact that he possesses one.

— Johann Wolfgang von Goethe (1749–1832)

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 562

Cryptography

• Alice (A) wants to send a message to Bob (B) over a

channel monitored by Eve (eavesdropper).

• The protocol should be such that the message is known

only to Alice and Bob.

• The art and science of keeping messages secure is

cryptography.

Alice -
Eve

Bob

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 563

Encryption and Decryption

• Alice and Bob agree on two algorithms E and D—the

encryption and the decryption algorithms.

• Both E and D are known to the public in the analysis.

• Alice runs E and wants to send a message x to Bob.

• Bob operates D.

• Privacy is assured in terms of two numbers e, d, the

encryption and decryption keys.

• Alice sends y = E(e, x) to Bob, who then performs

D(d, y) = x to recover x.

• x is called plaintext, and y is called ciphertext.a

aBoth “zero” and “cipher” come from the same Arab word.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 564

Some Requirements

• D should be an inverse of E given e and d.

• D and E must both run in (probabilistic) polynomial

time.

• Eve should not be able to recover x from y without

knowing d.

– As D is public, d must be kept secret.

– e may or may not be a secret.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 565

Degrees of Security

• Perfect secrecy: After a ciphertext is intercepted by

the enemy, the a posteriori probabilities of the plaintext

that this ciphertext represents are identical to the a

priori probabilities of the same plaintext before the

interception.

– The probability that plaintext P occurs is

independent of the ciphertext C being observed.

– So knowing C yields no advantage in recovering P.

• Such systems are said to be informationally secure.

• A system is computationally secure if breaking it is

theoretically possible but computationally infeasible.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 566

Conditions for Perfect Secrecya

• Consider a cryptosystem where:

– The space of ciphertext is as large as that of keys.

– Every plaintext has a nonzero probability of being

used.

• It is perfectly secure if and only if the following hold.

– A key is chosen with uniform distribution.

– For each plaintext x and ciphertext y, there exists a

unique key e such that E(e, x) = y.

aShannon (1949).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 567

The One-Time Pada

1: Alice generates a random string r as long as x;

2: Alice sends r to Bob over a secret channel;

3: Alice sends r ⊕ x to Bob over a public channel;

4: Bob receives y;

5: Bob recovers x := y ⊕ r;

aMauborgne and Vernam (1917); Shannon (1949). It was allegedly

used for the hotline between Russia and U.S.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 568

Analysis

• The one-time pad uses e = d = r.

• This is said to be a private-key cryptosystem.

• Knowing x and knowing r are equivalent.

• Because r is random and private, the one-time pad

achieves perfect secrecy (see also p. 567).

• The random bit string must be new for each round of

communication.

– Cryptographically strong pseudorandom

generators require exchanging only the seed once.

• The assumption of a private channel is problematic.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 569

Public-Key Cryptographya

• Suppose only d is private to Bob, whereas e is public

knowledge.

• Bob generates the (e, d) pair and publishes e.

• Anybody like Alice can send E(e, x) to Bob.

• Knowing d, Bob can recover x by D(d,E(e, x)) = x.

• The assumptions are complexity-theoretic.

– It is computationally difficult to compute d from e.

– It is computationally difficult to compute x from y

without knowing d.

aDiffie and Hellman (1976).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 570

Whitfield Diffie (1944–)

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 571

Martin Hellman (1945–)

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 572

Complexity Issues

• Given y and x, it is easy to verify whether E(e, x) = y.

• Hence one can always guess an x and verify.

• Cracking a public-key cryptosystem is thus in NP.

• A necessary condition for the existence of secure

public-key cryptosystems is P ̸= NP.

• But more is needed than P ̸= NP.

• For instance, it is not sufficient that D is hard to

compute in the worst case.

• It should be hard in “most” or “average” cases.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 573

One-Way Functions

A function f is a one-way function if the following hold.a

1. f is one-to-one.

2. For all x ∈ Σ∗, |x |1/k ≤ |f(x)| ≤ |x |k for some k > 0.

• f is said to be honest.

3. f can be computed in polynomial time.

4. f−1 cannot be computed in polynomial time.

• Exhaustive search works, but it is too slow.

aDiffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann

and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe

(1985); Young (1983).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 574

Existence of One-Way Functions

• Even if P ̸= NP, there is no guarantee that one-way

functions exist.

• No functions have been proved to be one-way.

• Is breaking glass a one-way function?

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 575

Candidates of One-Way Functions

• Modular exponentiation f(x) = gx mod p, where g is a

primitive root of p.

– Discrete logarithm is hard.a

• The RSAb function f(x) = xe mod pq for an odd e

relatively prime to ϕ(pq).

– Breaking the RSA function is hard.

aConjectured to be 2n
ϵ
for some ϵ > 0 in both the worst-case sense

and average sense. It is in NP in some sense (Grollmann and Selman

(1988)).
bRivest, Shamir, and Adleman (1978).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 576

Candidates of One-Way Functions (concluded)

• Modular squaring f(x) = x2 mod pq.

– Determining if a number with a Jacobi symbol 1 is a

quadratic residue is hard—the quadratic

residuacity assumption (QRA).a

aDue to Gauss.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 577

The RSA Function

• Let p, q be two distinct primes.

• The RSA function is xe mod pq for an odd e relatively

prime to ϕ(pq).

– By Lemma 51 (p. 404),

ϕ(pq) = pq

(
1− 1

p

)(
1− 1

q

)
= pq − p− q + 1. (8)

• As gcd(e, ϕ(pq)) = 1, there is a d such that

ed ≡ 1 mod ϕ(pq),

which can be found by the Euclidean algorithm.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 578

Adi Shamir, Ron Rivest, and Leonard Adleman

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 579

Ron Rivesta (1947–)

aTuring Award (2002).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 580

Adi Shamira (1952–)

aTuring Award (2002).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 581

Leonard Adlemana (1945–)

aTuring Award (2002).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 582

A Public-Key Cryptosystem Based on RSA

• Bob generates p and q.

• Bob publishes pq and the encryption key e, a number

relatively prime to ϕ(pq).

– The encryption function is y = xe mod pq.

– Bob calculates ϕ(pq) by Eq. (8) (p. 578).

– Bob then calculates d such that ed = 1 + kϕ(pq) for

some k ∈ Z.

• The decryption function is yd mod pq.

• It works because yd = xed = x1+kϕ(pq) = x mod pq by

the Fermat-Euler theorem when gcd(x, pq) = 1 (p. 412).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 583

The “Security” of the RSA Function

• Factoring pq or calculating d from (e, pq) seems hard.

– See also p. 408.

• Breaking the last bit of RSA is as hard as breaking the

RSA.a

• Recommended RSA key sizes:b

– 1024 bits up to 2010.

– 2048 bits up to 2030.

– 3072 bits up to 2031 and beyond.

aAlexi, Chor, Goldreich, and Schnorr (1988).
bRSA (2003).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 584

The “Security” of the RSA Function (concluded)

• Recall that problem A is “harder than” problem B if

solving A results in solving B.

– Factorization is “harder than” breaking the RSA.

– Calculating Euler’s phi function is “harder than”

breaking the RSA.

– Factorization is “harder than” calculating Euler’s phi

function (see Lemma 51 on p. 404).

– So factorization is harder than calculating Euler’s phi

function, which is harder than breaking the RSA.

• Factorization cannot be NP-hard unless NP = coNP.a

• So breaking the RSA is unlikely to imply P = NP.
aBrassard (1979).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 585

The Secret-Key Agreement Problem

• Exchanging messages securely using a private-key

cryptosystem requires Alice and Bob possessing the

same key (p. 569).

• How can they agree on the same secret key when the

channel is insecure?

• This is called the secret-key agreement problem.

• It was solved by Diffie and Hellman (1976) using

one-way functions.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 586

The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive

root g of p; {p and g are public.}
2: Alice chooses a large number a at random;

3: Alice computes α = ga mod p;

4: Bob chooses a large number b at random;

5: Bob computes β = gb mod p;

6: Alice sends α to Bob, and Bob sends β to Alice;

7: Alice computes her key βa mod p;

8: Bob computes his key αb mod p;

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 587

Analysis

• The keys computed by Alice and Bob are identical:

βa = gba = gab = αb mod p.

• To compute the common key from p, g, α, β is known as

the Diffie-Hellman problem.

• It is conjectured to be hard.

• If discrete logarithm is easy, then one can solve the

Diffie-Hellman problem.

– Because a and b can then be obtained by Eve.

• But the other direction is still open.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 588

A Parallel History

• Diffie and Hellman’s solution to the secret-key

agreement problem led to public-key cryptography.

• At around the same time (or earlier) in Britain, the

RSA public-key cryptosystem was invented first before

the Diffie-Hellman secret-key agreement scheme was.

– Ellis, Cocks, and Williamson of the Communications

Electronics Security Group of the British Government

Communications Head Quarters (GCHQ).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 589

Digital Signaturesa

• Alice wants to send Bob a signed document x.

• The signature must unmistakably identifies the sender.

• Both Alice and Bob have public and private keys

eAlice, eBob, dAlice, dBob.

• Assume the cryptosystem satisfies the commutative property

E(e,D(d, x)) = D(d,E(e, x)). (9)

– As (xd)e = (xe)d, the RSA system satisfies it.

– Every cryptosystem guarantees D(d,E(e, x)) = x.

aDiffie and Hellman (1976).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 590

Digital Signatures Based on Public-Key Systems

• Alice signs x as

(x,D(dAlice, x)).

• Bob receives (x, y) and verifies the signature by checking

E(eAlice, y) = E(eAlice, D(dAlice, x)) = x

based on Eq. (9).

• The claim of authenticity is founded on the difficulty of

inverting EAlice without knowing the key dAlice.

• Warning: If Alice signs anything presented to her, she

might inadvertently decrypt a ciphertext of hers.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 591

Probabilistic Encryptiona

• A deterministic cryptosystem can be broken if the

plaintext has a distribution that favors the “easy” cases.

• The ability to forge signatures on even a vanishingly

small fraction of strings of some length is a security

weakness if those strings were the probable ones!

• A scheme may also “leak” partial information.

– Parity of the plaintext, e.g.

• The first solution to the problems of skewed distribution

and partial information was based on the QRA.

aGoldwasser and Micali (1982).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 592

Shafi Goldwasser (1958–)

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 593

Silvio Micali (1954–)

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 594

The Setup

• Bob publishes n = pq, a product of two distinct primes,

and a quadratic nonresidue y with Jacobi symbol 1.

• Bob keeps secret the factorization of n.

• Alice wants to send bit string b1b2 · · · bk to Bob.

• Alice encrypts the bits by choosing a random quadratic

residue modulo n if bi is 1 and a random quadratic

nonresidue (with Jacobi symbol 1) otherwise.

• A sequence of residues and nonresidues are sent.

• Knowing the factorization of n, Bob can efficiently test

quadratic residuacity and thus read the message.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 595

A Useful Lemma

Lemma 75 Let n = pq be a product of two distinct primes.

Then a number y ∈ Z∗
n is a quadratic residue modulo n if

and only if (y | p) = (y | q) = 1.

• The “only if” part:

– Let x be a solution to x2 = y mod pq.

– Then x2 = y mod p and x2 = y mod q also hold.

– Hence y is a quadratic modulo p and a quadratic

residue modulo q.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 596

The Proof (concluded)

• The “if” part:

– Let a21 = y mod p and a22 = y mod q.

– Solve

x = a1 mod p,

x = a2 mod q,

for x with the Chinese remainder theorem.

– As x2 = y mod p, x2 = y mod q, and gcd(p, q) = 1,

we must have x2 = y mod pq.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 597

The Jacobi Symbol and Quadratic Residuacity Test

• The Legendre symbol can be used as a test for quadratic

residuacity by Lemma 63 (p. 482).

• Lemma 75 (p. 596) says this is not the case with the

Jacobi symbol in general.

• Suppose n = pq is a product of two distinct primes.

• A number y ∈ Z∗
n with Jacobi symbol (y | pq) = 1 may

be a quadratic nonresidue modulo n when

(y | p) = (y | q) = −1,

because (y | pq) = (y | p)(y | q).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 598

The Protocol for Alice

1: for i = 1, 2, . . . , k do

2: Pick r ∈ Z∗
n randomly;

3: if bi = 1 then

4: Send r2 mod n; {Jacobi symbol is 1.}
5: else

6: Send r2y mod n; {Jacobi symbol is still 1.}
7: end if

8: end for

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 599

The Protocol for Bob

1: for i = 1, 2, . . . , k do

2: Receive r;

3: if (r | p) = 1 and (r | q) = 1 then

4: bi := 1;

5: else

6: bi := 0;

7: end if

8: end for

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 600

Semantic Security

• This encryption scheme is probabilistic.

• There are a large number of different encryptions of a

given message.

• One is chosen at random by the sender to represent the

message.

• This scheme is both polynomially secure and

semantically secure.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 601

What Is a Proof?

• A proof convinces a party of a certain claim.

– “xn + yn ̸= zn for all x, y, z ∈ Z+ and n > 2.”

– “Graph G is Hamiltonian.”

– “xp = x mod p for prime p and p ̸ |x.”

• In mathematics, a proof is a fixed sequence of theorems.

– Think of it as a written examination.

• We will extend a proof to cover a proof process by which

the validity of the assertion is established.

– Recall a job interview or an oral examination.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 602

Prover and Verifier

• There are two parties to a proof.

– The prover (Peggy).

– The verifier (Victor).

• Given an assertion, the prover’s goal is to convince the

verifier of its validity (completeness).

• The verifier’s objective is to accept only correct

assertions (soundness).

• The verifier usually has an easier job than the prover.

• The setup is very much like the Turing test.a

aTuring (1950).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 603

Interactive Proof Systems

• An interactive proof for a language L is a sequence of

questions and answers between the two parties.

• At the end of the interaction, the verifier decides

whether the claim is true or false.

• The verifier must be a probabilistic polynomial-time

algorithm.

• The prover runs an exponential-time algorithm.

– If the prover is not more powerful than the verifier,

no interaction is needed.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 604

Interactive Proof Systems (concluded)

• The system decides L if the following two conditions

hold for any common input x.

– If x ∈ L, then the probability that x is accepted by

the verifier is at least 1− 2−| x |.

– If x ̸∈ L, then the probability that x is accepted by

the verifier with any prover replacing the original

prover is at most 2−| x |.

• Neither the number of rounds nor the lengths of the

messages can be more than a polynomial of |x |.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 605

An Interactive Proof

3

3

3

3

3

9

9

9

9

9

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 606

IPa

• IP is the class of all languages decided by an interactive

proof system.

• When x ∈ L, the completeness condition can be

modified to require that the verifier accepts with

certainty without affecting IP.b

• Similar things cannot be said of the soundness condition

when x ̸∈ L.

• Verifier’s coin flips can be public.c

aGoldwasser, Micali, and Rackoff (1985).
bGoldreich, Mansour, and Sipser (1987).
cGoldwasser and Sipser (1989).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 607

The Relations of IP with Other Classes

• NP ⊆ IP.

– IP becomes NP when the verifier is deterministic.

• BPP ⊆ IP.

– IP becomes BPP when the verifier ignores the

prover’s messages.

• IP actually coincides with PSPACE.a

aShamir (1990).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 608

Graph Isomorphism

• V1 = V2 = {1, 2, . . . , n}.

• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

isomorphic if there exists a permutation π on

{1, 2, . . . , n} so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1
∼= G2.

• No known polynomial-time algorithms.

• The problem is in NP (hence IP).

• It is not likely to be NP-complete.a

aSchöning (1987).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 609

graph nonisomorphism

• V1 = V2 = {1, 2, . . . , n}.

• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

nonisomorphic if there exist no permutations π on

{1, 2, . . . , n} so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1 ̸∼= G2.

• Again, no known polynomial-time algorithms.

– It is in coNP, but how about NP or BPP?

– It is not likely to be coNP-complete.

• Surprisingly, graph nonisomorphism ∈ IP.a

aGoldreich, Micali, and Wigderson (1986).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 610

A 2-Round Algorithm
1: Victor selects a random i ∈ { 1, 2 };
2: Victor selects a random permutation π on { 1, 2, . . . , n };
3: Victor applies π on graph Gi to obtain graph H;

4: Victor sends (G1, H) to Peggy;

5: if G1
∼= H then

6: Peggy sends j = 1 to Victor;

7: else

8: Peggy sends j = 2 to Victor;

9: end if

10: if j = i then

11: Victor accepts;

12: else

13: Victor rejects;

14: end if

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 611

Analysis

• Victor runs in probabilistic polynomial time.

• Suppose G1 ̸∼= G2.

– Peggy is able to tell which Gi is isomorphic to H.

– So Victor always accepts.

• Suppose G1
∼= G2.

– No matter which i is picked by Victor, Peggy or any

prover sees 2 identical graphs.

– Peggy or any prover with exponential power has only

probability one half of guessing i correctly.

– So Victor erroneously accepts with probability 1/2.

• Repeat the algorithm to obtain the desired probabilities.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 612

