Lengths of Boolean Formulas for the Threshold Function®

e Define the boolean function Ty (z1,...,x,) to be 1 if at
least k£ of the x;’s are 1s, and 0 otherwise.

e Trivially, a formula of size O((})) exists.

— Formula

T5(x1, %2, .., Ty) = \/ (i ANzj A xg)

1<i<j<k<n

has size (%) = O(n?).

e Surprisingly, for any k, there exists a constant c; such

that Ty (x1,...,z,) has formula size at most cxnlog, n.

e The construction is again probabilistic, not constructive.

2Nechiporuk (1964)7

©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 552



Lengths of Boolean Formulas for the Threshold Function (continued)
e We will verify the k = 3 case below.

e Suppose we construct the formula of the form

F=FV---VF,.

e FEach F; takes the form:

— By the distribution law,

(al\/CLQ\/-.-)/\(bl\/b2\/..-)/\(cl\/62\/...)
= (a1 AbyAc1)V(ag Abi Aeg) Vee- .

©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 553



Lengths of Boolean Formulas for the Threshold Function (continued)

e Each z; is placed into one of the pairs of parentheses at

random.

— E.g., Fz = (5131 Va3V 5135) A (CI?Q V 334) N (376 V 1137).

e So Fj has exactly n variables.

e The process is repeated for each F;.
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Lengths of Boolean Formulas for the Threshold Function (continued)
e Clearly, all the monomials of F' are of the form
xa N\ Tp N\ x. for distinct a, b, c.

— For example, F; may look like
(x1 VasVas) A(xeVay) A(xg Var)

= (z1 AxoAxg) V(1 Az ATr)
Voo V(x5 Ay Axy).

e We know T3 has (g) monomials.

e We shall show, if r is large enough, all (g) monomials

will appear with high probability.
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Lengths of Boolean Formulas for the Threshold Function (continued)

e The probability that any given monomial z, A xp A 2.
appears in a given Fj is the probability that x,, xp, x.
are thrown into distinct pairs of parentheses.

The probability is hence equal to (2/3)(1/3) = 2/9.

The probability that x, A zp A . is not a monomial of
Ffé,S 1S (7/9)T

Therefore, the probability that at least one of the

(g) < n3 monomials is missing from all the Fj’s is

<n3(7/9)".
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Lengths of Boolean Formulas for the Threshold Function (concluded)
e This probability is less than one when n3(7/9)" < 1.

e When this happens, F' includes all (g) monomials, and

F' has size < rn.

In particular, with r = —log; 9 2n°, the probability that
F # T3 is at most 1/2.

In other words, the probability of that F' = Tj5 is at least
1/2.

Hence a formula of size O(nlogn) exists.
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Finding Short Formulas for the Threshold Function

e Our analysis implies an expected polynomial-time
randomized algorithm to find such a formula (for T3).

Generate F' randomly as described.

In O((3)) = O(n?) time, evaluate F with every n-bit

truth assignment with three 1’s and check if F' = 1.

In O((4)) = O(n?) time, evaluate F with every n-bit
truth assignment with two 1’s and check if F' = 0.

In O(n) time, evaluate F' with every n-bit truth
assignment with one 1 and check if F' = 0.

Check if F' = 0 with the all-0 truth assignment.

©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 559



Finding Short Formulas for the Threshold Function (concluded)

If F' passes all the tests, return F'.
— No need to check if F' =1 when the truth assignment

contains more than three 1’s because F' is monotone.?
e Otherwise, repeat the experiment.

Clearly, the expected running time to find a valid

formula is proportional to

nd 4+ (1/2)n> + (1/2)2n + .- = 0(n?).

#Thanks to a lively class discussion on December 8, 2009.
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Cryptography
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Whoever wishes to keep a secret

must hide the fact that he possesses one.
— Johann Wolfgang von Goethe (1749-1832)
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Cryptography

e Alice (A) wants to send a message to Bob (B) over a

channel monitored by Eve (eavesdropper).

e The protocol should be such that the message is known
only to Alice and Bob.

e The art and science of keeping messages secure is

cryptography.
Eve
Alice > Bob
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Encryption and Decryption

Alice and Bob agree on two algorithms £ and D—the
encryption and the decryption algorithms.

Both F/ and D are known to the public in the analysis.
Alice runs F/ and wants to send a message x to Bob.
Bob operates D.

Privacy is assured in terms of two numbers e, d, the
encryption and decryption keys.

Alice sends y = E(e, z) to Bob, who then performs
D(d,y) = x to recover .

e 1 is called plaintext, and y is called ciphertext.?

aBoth “zero” and “cipher” come from the same Arab word.
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Some Requirements

e D should be an inverse of F given e and d.

e D and E must both run in (probabilistic) polynomial

time.

e Eve should not be able to recover x from y without
knowing d.
— As D is public, d must be kept secret.

— e may or may not be a secret.
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Degrees of Security

e Perfect secrecy: After a ciphertext is intercepted by
the enemy, the a posteriori probabilities of the plaintext
that this ciphertext represents are identical to the a
priori probabilities of the same plaintext before the

interception.

— The probability that plaintext P occurs is
independent of the ciphertext C being observed.

— So knowing C yields no advantage in recovering P.
e Such systems are said to be informationally secure.

e A system is computationally secure if breaking it is

theoretically possible but computationally infeasible.
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Conditions for Perfect Secrecy?

e Consider a cryptosystem where:
— The space of ciphertext is as large as that of keys.
— Every plaintext has a nonzero probability of being
used.
e It is perfectly secure if and only if the following hold.
— A key is chosen with uniform distribution.

— For each plaintext = and ciphertext y, there exists a

unique key e such that F(e,z) = y.

2Shannon (1949).
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The One-Time Pad?

. Alice generates a random string r as long as x;

. Alice sends r to Bob over a secret channel;

. Alice sends r @ x to Bob over a public channel;
. Bob receives y;

: Bob recovers x :=y & r;

*Mauborgne and Vernam (1917); Shannon (1949). It was allegedly

used for the hotline between Russia and U.S.
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Analysis

The one-time pad uses e =d = r.
This is said to be a private-key cryptosystem.
Knowing x and knowing r are equivalent.

Because r is random and private, the one-time pad

achieves perfect secrecy (see also p. 567).

The random bit string must be new for each round of
communication.
— Cryptographically strong pseudorandom

generators require exchanging only the seed once.

The assumption of a private channel is problematic.
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Public-Key Cryptography?

Suppose only d is private to Bob, whereas e is public

knowledge.

Bob generates the (e, d) pair and publishes e.
Anybody like Alice can send E(e, ) to Bob.
Knowing d, Bob can recover x by D(d, E(e,z)) = x.

The assumptions are complexity-theoretic.
— It is computationally difficult to compute d from e.

— It is computationally difficult to compute x from y

without knowing d.

2Diffie and Hellman (1976).
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Whitfield Diffie (1944-)
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Martin Hellman (1945-)
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Complexity Issues

Given y and z, it is easy to verify whether E(e,x) = y.
Hence one can always guess an x and verify.
Cracking a public-key cryptosystem is thus in NP.

A necessary condition for the existence of secure

public-key cryptosystems is P # NP.
But more is needed than P # NP.

For instance, it is not sufficient that D is hard to

compute in the worst case.

It should be hard in “most” or “average” cases.
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One-Way Functions
A function f is a one-way function if the following hold.?

1. f is one-to-one.

2. For all z € 2%, |z |V/* < |f(x)| < |2 |F for some k > 0.

e f is said to be honest.
3. f can be computed in polynomial time.

4. f~! cannot be computed in polynomial time.

e Exhaustive search works, but it is too slow.

2Diffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann
and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe
(1985); Young (1983).
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Existence of One-Way Functions

e Even if P £ NP, there is no guarantee that one-way

functions exist.
e No functions have been proved to be one-way.

e Is breaking glass a one-way function?
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Candidates of One-Way Functions

e Modular exponentiation f(x) = ¢ mod p, where g is a

primitive root of p.

— Discrete logarithm is hard.?

e The RSAP function f(x) = x° mod pq for an odd e

relatively prime to ¢(pq).
— Breaking the RSA function is hard.

2Conjectured to be 27° for some € > 0 in both the worst-case sense
and average sense. It is in NP in some sense (Grollmann and Selman

(1988)).
PRivest, Shamir, and Adleman (1978).
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Candidates of One-Way Functions (concluded)

e Modular squaring f(z) = 2% mod pq.

— Determining if a number with a Jacobi symbol 1 is a
quadratic residue is hard—the quadratic

residuacity assumption (QRA).?

2Due to Gauss.
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The RSA Function

e Let p, g be two distinct primes.

e The RSA function is ¢ mod pq for an odd e relatively
prime to ¢(pq).
— By Lemma 51 (p. 404),

1

o(pq) = pq (1 -

e As ged(e, d(pq)) = 1, there is a d such that
ed = 1 mod ¢(pq),

which can be found by the Euclidean algorithm.
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Adi Shamir, Ron Rivest, and Leonard Adleman
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Ron Rivest® (1947-)

2Turing Award (2002).
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Adi Shamir® (1952-)

!-b-—iH

i".
i
E;I
L

2Turing Award (2002).
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Leonard Adleman?® (1945-)

2Turing Award (2002).
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A Public-Key Cryptosystem Based on RSA

Bob generates p and q.

Bob publishes pg and the encryption key e, a number

relatively prime to ¢(pq).

— The encryption function is y = x° mod pq.

— Bob calculates ¢(pq) by Eq. (8) (p. 578).

— Bob then calculates d such that ed = 1+ k¢(pq) for
some k € Z.

The decryption function is y¢ mod pg.

It works because y¢ = z¢% = ! t*k¢(P9) = x mod pq by
the Fermat-Euler theorem when ged(z, pg) =1 (p. 412).
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The “Security” of the RSA Function

e Factoring pq or calculating d from (e, pq) seems hard.

— See also p. 408.

e Breaking the last bit of RSA is as hard as breaking the
RSA.?

e Recommended RSA key sizes:P

— 1024 bits up to 2010.
— 2048 bits up to 2030.
— 3072 bits up to 2031 and beyond.

2Alexi, Chor, Goldreich, and Schnorr (1988).
PRSA (2003).
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The “Security” of the RSA Function (concluded)

Recall that problem A is “harder than” problem B if
solving A results in solving B.

— Factorization is “harder than” breaking the RSA.

— Calculating Euler’s phi function is “harder than”
breaking the RSA.

— Factorization is “harder than” calculating Euler’s phi

function (see Lemma 51 on p. 404).

— So factorization is harder than calculating Euler’s phi
function, which is harder than breaking the RSA.

e Factorization cannot be NP-hard unless NP = coNP.?

e So breaking the RSA is unlikely to imply P = NP.
2Brassard (1979).
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The Secret-Key Agreement Problem

Exchanging messages securely using a private-key
cryptosystem requires Alice and Bob possessing the
same key (p. 569).

How can they agree on the same secret key when the

channel is insecure?
This is called the secret-key agreement problem.

It was solved by Diffie and Hellman (1976) using

one-way functions.
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The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive

root g of p; {p and g are public.}

. Alice chooses a large number a at random:;

. Alice computes a = g* mod p;

: Bob chooses a large number b at random;

. Bob computes 8 = ¢° mod p;

. Alice sends a to Bob, and Bob sends 8 to Alice;

. Alice computes her key 5% mod p;

. Bob computes his key a® mod p;
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Analysis

The keys computed by Alice and Bob are identical:

B = ¢g* = g% = a® mod p.

To compute the common key from p, g, o, 8 is known as
the Diffie-Hellman problem.

It is conjectured to be hard.

If discrete logarithm is easy, then one can solve the
Diffie-Hellman problem.

— Because a and b can then be obtained by Eve.

But the other direction is still open.
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A Parallel History

e Diffie and Hellman’s solution to the secret-key

agreement problem led to public-key cryptography.

e At around the same time (or earlier) in Britain, the
RSA public-key cryptosystem was invented first before
the Diffie-Hellman secret-key agreement scheme was.

— Ellis, Cocks, and Williamson of the Communications
Electronics Security Group of the British Government
Communications Head Quarters (GCHQ).
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Digital Signatures®

Alice wants to send Bob a signed document x.
The signature must unmistakably identifies the sender.

Both Alice and Bob have public and private keys
€Alices €Bobs AAlice; dBob -
Assume the cryptosystem satisfies the commutative property
E(e,D(d,x)) = D(d, E(e,x)). (9)

— As ()¢ = (2°)%, the RSA system satisfies it.

— Every cryptosystem guarantees D(d, E(e,x)) = .

2Diffie and Hellman (1976).
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Digital Signatures Based on Public-Key Systems

Alice signs x as
(33, D(dAli067 QZ‘))

Bob receives (x,y) and verifies the signature by checking

E(eAIicea y) — E(eAlicea D(dAlice7 :E)) — T
based on Eq. (9).

The claim of authenticity is founded on the difficulty of
inverting E'ajice Without knowing the key dajice.

Warning: If Alice signs anything presented to her, she
might inadvertently decrypt a ciphertext of hers.
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Probabilistic Encryption?

A deterministic cryptosystem can be broken if the
plaintext has a distribution that favors the “easy” cases.

The ability to forge signatures on even a vanishingly
small fraction of strings of some length is a security
weakness if those strings were the probable ones!

A scheme may also “leak” partial information.

— Parity of the plaintext, e.g.

The first solution to the problems of skewed distribution
and partial information was based on the QRA.

2Goldwasser and Micali (1982).
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Shafi Goldwasser (1958-)
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Silvio Micali (1954-)
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The Setup

Bob publishes n = pq, a product of two distinct primes,
and a quadratic nonresidue y with Jacobi symbol 1.

Bob keeps secret the factorization of n.
Alice wants to send bit string b1bs - - - by, to Bob.

Alice encrypts the bits by choosing a random quadratic
residue modulo n if b; is 1 and a random quadratic
nonresidue (with Jacobi symbol 1) otherwise.

A sequence of residues and nonresidues are sent.

Knowing the factorization of n, Bob can efficiently test

quadratic residuacity and thus read the message.
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A Useful Lemma

Lemma 75 Let n = pq be a product of two distinct primes.

Then a number y € Z* is a quadratic residue modulo n if

and only if (y|p) = (ylq) = 1.

e The “only if” part:

— Let = be a solution to £ = y mod pg.

— Then z? = y mod p and z? = y mod ¢ also hold.

— Hence y is a quadratic modulo p and a quadratic
residue modulo g.
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The Proof (concluded)

e The “if” part:
— Let a# = y mod p and a3 = y mod q.

— Solve

r = a1 modp,

x as mod q,

for £ with the Chinese remainder theorem.

— As 22 = y mod p, 2° = y mod ¢, and ged(p, q) = 1,
2

we must have x* = y mod pq.
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The Jacobi Symbol and Quadratic Residuacity Test

e The Legendre symbol can be used as a test for quadratic
residuacity by Lemma 63 (p. 482).

Lemma 75 (p. 596) says this is not the case with the

Jacobi symbol in general.
Suppose n = pq is a product of two distinct primes.

A number y € Z* with Jacobi symbol (y|pg) = 1 may

be a quadratic nonresidue modulo n when

(ylp) = (y|q) = —1,

because (y|pq) = (y|p)(y|q)-
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The Protocol for Alice
1: for:=1,2,...,k do
Pick r € Z; randomly;
if b, = 1 then
Send r? mod n; {Jacobi symbol is 1.}

Send r2y mod n; {Jacobi symbol is still 1.}
end if
end for

2:
3
4
5. else
6
7
8:
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The Protocol for Bob
. fort=1,2,...,k do
Receive r;
if (r|p)=1and (r|q) =1 then

b, :=1;
else
b, := 0;
end if
. end for
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Semantic Security

This encryption scheme is probabilistic.

There are a large number of different encryptions of a

given message.

One is chosen at random by the sender to represent the

message.

This scheme is both polynomially secure and

semantically secure.
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What Is a Proof?

A proof convinces a party of a certain claim.

— gty £ 2" for all z,y,z € ZT and n > 2.7

— “Graph G is Hamiltonian.”
— “zP = z mod p for prime p and p fz.”
In mathematics, a proof is a fixed sequence of theorems.

— Think of it as a written examination.

We will extend a proof to cover a proof process by which

the validity of the assertion is established.

— Recall a job interview or an oral examination.
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Prover and Verifier

There are two parties to a proof.
— The prover (Peggy).
— The verifier (Victor).

Given an assertion, the prover’s goal is to convince the

verifier of its validity (completeness).

The verifier’s objective is to accept only correct

assertions (soundness).
The verifier usually has an easier job than the prover.

e The setup is very much like the Turing test.?

2Turing (1950).
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Interactive Proof Systems

An interactive proof for a language L is a sequence of

questions and answers between the two parties.

At the end of the interaction, the verifier decides

whether the claim is true or false.

The verifier must be a probabilistic polynomial-time
algorithm.
The prover runs an exponential-time algorithm.

— If the prover is not more powertul than the verifier,

no interaction is needed.
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Interactive Proof Systems (concluded)

e The system decides L if the following two conditions

hold for any common input x.

— If x € L, then the probability that x is accepted by

the verifier is at least 1 — 211,

— If x € L, then the probability that x is accepted by
the verifier with any prover replacing the original

prover 1s at most 2-l=l,

e Neither the number of rounds nor the lengths of the

messages can be more than a polynomial of |z |.
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An Interactive Proof
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IPa

e IP is the class of all languages decided by an interactive

proof system.

e When x € L, the completeness condition can be
modified to require that the verifier accepts with

certainty without affecting IP.P

e Similar things cannot be said of the soundness condition
when x & L.

e Verifier’s coin flips can be public.©

2Goldwasser, Micali, and Rackoff (1985).

bGoldreich, Mansour, and Sipser (1987).
¢Goldwasser and Sipser (1989).
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The Relations of IP with Other Classes
o NP C IP.

— IP becomes NP when the verifier is deterministic.

e BPP C IP.

— IP becomes BPP when the verifier ignores the

prover’s messages.

e [P actually coincides with PSPACE.?

aShamir (1990).
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Graph Isomorphism

Vl = V2 — {1,2,...,n}.
Graphs G1 = (V1, E1) and Gy = (Va, Es) are

isomorphic if there exists a permutation 7 on
{1,2,...,n} so that (u,v) € B} & (7(u),n(v)) € Es.

The task is to answer if G1 = Gs.
No known polynomial-time algorithms.
The problem is in NP (hence IP).

It is not likely to be NP-complete.?

2Schoéning (1987).
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GRAPH NONISOMORPHISM

V1 :V2:{1,2,...,’n}.

Graphs G; = (V4, E1) and G = (Vh, E5) are
nonisomorphic if there exist no permutations 7 on
{1,2,...,n} so that (u,v) € F1 & (7w(u),n(v)) € Es.

The task is to answer if G1 2 Go.

Again, no known polynomial-time algorithms.
— It is in coNP, but how about NP or BPP?
— It is not likely to be coNP-complete.

e Surprisingly, GRAPH NONISOMORPHISM € IP.?

2Goldreich, Micali, and Wigderson (1986).
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A 2-Round Algorithm

Victor selects a random ¢ € {1,2 };
Victor selects a random permutation 7 on {1,2,...,n };
Victor applies m on graph G; to obtain graph H;
Victor sends (G1, H) to Peggy;
if G1 & H then
Peggy sends 7 = 1 to Victor;
else
Peggy sends 7 = 2 to Victor;
end if
if j =1 then

1:
2:
3:
4:
5:
6:
T
8:
9:

—_— =
)

Victor accepts;

- else

—_
.O:DL\D

Victor rejects;
: end if

—_
S
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Analysis

e Victor runs in probabilistic polynomial time.

e Suppose G1 2 Gs.
— Peggy is able to tell which G; is isomorphic to H.

— So Victor always accepts.

e Suppose G1 = Ga.
— No matter which ¢ is picked by Victor, Peggy or any

prover sees 2 identical graphs.

— Peggy or any prover with exponential power has only

probability one half of guessing ¢ correctly.

— So Victor erroneously accepts with probability 1/2.

e Repeat the algorithm to obtain the desired probabilities.
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