
Theory of Computation

Solutions to Homework 2

Problem 1. Derive a disjunctive normal form of

(x1 ∨ y1) ∧ (x2 ∨ y2) ∧ · · · ∧ (xn ∨ yn).

Proof. We prove the following:

(x1 ∨ y1) ∧ (x2 ∨ y2) ∧ · · · ∧ (xn ∨ yn) =
∨

(a1,a2,...,an)∈{x,y}n

(
n∧

i=1

(ai)i

)

by induction. For n = 1 the equation is trivial. Assume for n = k the
equation holds. We have:

(x1 ∨ y1) ∧ (x2 ∨ y2) ∧ · · · ∧ (xk+1 ∨ yk+1)

=
∨

(a1,a2,...,ak)∈{x,y}k

(
k∧

i=1

(ai)i

)
∧ (xk+1 ∨ yk+1)

=
∨

(a1,a2,...,ak)∈{x,y}k

∨
ak+1∈{x,y}

(
k∧

i=1

(ai)i
∧

(ak+1)k+1

)

=
∨

(a1,a2,...,ak+1)∈{x,y}k+1

(
k+1∧
i=1

(ai)i

)

The equation whose right-hand side is a desired DNF is established by math-
ematical induction.

Problem 2. Prove that NP 6= SPACE(n).
(Hint: You don’t need to show NP ( SPACE(n) or SPACE(n) ( NP

since they are open questions so far as we know. All you need to do is to
prove these two sets are unequal.

A log-space reduction from language L1 to language L2 is a function R
which can be computed by a deterministic log-space Turing machine such
that x ∈ L1 iff R(x) ∈ L2. In the proof, you can treat log space and
polynomial time interchangeably. So as long as your reduction R runs in
polynomial time, it is fine.

A complexity class C is closed under log-space reduction if for any log-
space reduction R from L1 to L2, L1 ∈ C if L2 ∈ C. Show first that



NP is closed under log-space reduction. Then show that SPACE(n) is
not closed under log-space reduction by the Space Hierarchy Theorem (the
version in the textbook is sufficient). For this, suppose L1 ∈ SPACE(n2)
but L1 6∈ SPACE(n). Now ask yourself what is the space complexity of
deciding “x ∈ L2?”, where L2 consists of those strings x ∈ L1 padded with
n2 − n redundant symbols after x with |x| = n.)

Proof. For any log-space reduction R from L1 to L2, which is in NP, we may
execute the log-space Turing machine R and a nondeterministic polynomial-
time Turing machine that decides L2. The execution time of the first part
is a polynomial of the input length since SPACE(log n) ⊂ P and its output
length is also bounded by the same polynomial. Hence the execution time of
the second part is bounded by the composition of two polynomials, which is
in turn a polynomial of the original input length. Therefore L1 ∈ NP, and
NP is closed under log-space reduction.

We proceed to show that SPACE(n) is not closed under log-space re-
duction. For any language L1 ∈ SPACE(n2), we define a new language L2

as follows. For any x ∈ L1 whose length is n, x

n2−n︷ ︸︸ ︷
$ · · · $ where $ is a symbol

outside the alphabet of L1. Let R be a Turing machine (a reduction) which
pads n2− n $s after the input, whose length is n. Clearly, R runs in polyno-
mial time (log space). Modify the original quadratic-space Turing machine
for L1 to ignore $. The new Turing machine checks (1) the length of the
input string x is a square number, say n2, (2) the first n symbols are from
the alphabet of L1 and (3) the following n2 − n symbols are all $s. Then
the new Turing machine simulates the original Turing machine on the first
n symbols. This new Turing machine is a linear-space Turing machine be-
cause the counting-and-checking phase only requires O(log |x|) space and the
simulation phase requires O(n2) = O(|x|) space. (Note that x is the padded
string, not the original input string anymore). Hence, for the language L2

decided by this new Turing machine, we have L2 ∈ SPACE(n). Now pick
a language L1 ∈ SPACE(n2) but L1 6∈ SPACE(n). By the padding argu-
ment, there exists a language L2 ∈ SPACE(n) and a log-space reduction R
from L1 to L2. Thus SPACE(n) is not closed under log-space reduction.


