
The Reachability Method

• The computation of a time-bounded TM can be
represented by a directed graph.

• The TM’s configurations constitute the nodes.

• Two nodes are connected by a directed edge if one yields
the other.

• The start node representing the initial configuration has
zero in degree.

• When the TM is nondeterministic, a node may have an
out degree greater than one.
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Illustration of the Reachability Method

yes


yes

Initial


configuration
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Relations between Complexity Classes

Theorem 22 Suppose f(n) is proper. Then

1. SPACE(f(n)) ⊆ NSPACE(f(n)),
TIME(f(n)) ⊆ NTIME(f(n)).

2. NTIME(f(n)) ⊆ SPACE(f(n)).

3. NSPACE(f(n)) ⊆ TIME(klog n+f(n)).

• Proof of 2:

– Explore the computation tree of the NTM for “yes.”

– Specifically, generate a f(n)-bit sequence denoting
the nondeterministic choices over f(n) steps.
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Proof of Theorem 22(2)

• (continued)

– Simulate the NTM based on the choices.

– Recycle the space and then repeat the above steps
until a “yes” is encountered or the tree is exhausted.

– Each path simulation consumes at most O(f(n))
space because it takes O(f(n)) time.

– The total space is O(f(n)) because space is recycled.
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Proof of Theorem 22(3)

• Let k-string NTM

M = (K, Σ, ∆, s)

with input and output decide L ∈ NSPACE(f(n)).

• Use the reachability method on the configuration graph
of M on input x of length n.

• A configuration is a (2k + 1)-tuple

(q, w1, u1, w2, u2, . . . , wk, uk).
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Proof of Theorem 22(3) (continued)

• We only care about

(q, i, w2, u2, . . . , wk−1, uk−1),

where i is an integer between 0 and n for the position of
the first cursor.

• The number of configurations is therefore at most

|K| × (n + 1)× |Σ|(2k−4)f(n) = O(clog n+f(n)
1 ) (1)

for some c1, which depends on M .

• Add edges to the configuration graph based on M ’s
transition function.
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Proof of Theorem 22(3) (concluded)

• x ∈ L ⇔ there is a path in the configuration graph from
the initial configuration to a configuration of the form
(“yes”, i, . . .) [there may be many of them].

• This is reachability on a graph with O(clog n+f(n)
1 )

nodes.

• It is in TIME(clog n+f(n)) for some c because
reachability ∈ TIME(nj) for some j and

[
c
log n+f(n)
1

]j

= (cj
1)

log n+f(n).
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Space-Bounded Computation and Proper Functions

• In the definition of space-bounded computations earlier,
the TMs are not required to halt at all.

• When the space is bounded by a proper function f ,
computations can be assumed to halt:

– Run the TM associated with f to produce an output
of length f(n) first.

– The space-bound computation must repeat a
configuration if it runs for more than cn+f(n) steps
for some c (p. 198).

– So we can prevent infinite loops by counting steps
against cn+f(n).
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The Grand Chain of Inclusions

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

• By Corollary 19 (p. 191), we know L ( PSPACE.

• The chain must break somewhere between L and
PSPACE.a

• It is suspected that all four inclusions are proper.

• But there are no proofs yet.b

aBill Gates (1996), “I keep bumping into that silly quotation at-

tributed to me that says 640K of memory is enough.”
bCarl Friedrich Gauss (1777–1855), “I could easily lay down a mul-

titude of such propositions, which one could neither prove nor dispose

of.”
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Nondeterministic Space and Deterministic Space

• By Theorem 4 (p. 87),

NTIME(f(n)) ⊆ TIME(cf(n)),

an exponential gap.

• There is no proof yet that the exponential gap is
inherent.

• How about NSPACE vs. SPACE?

• Surprisingly, the relation is only quadratic—a
polynomial—by Savitch’s theorem.
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Savitch’s Theorem

Theorem 23 (Savitch (1970))

reachability ∈ SPACE(log2 n).

• Let G(V, E) be a graph with n nodes.

• For i ≥ 0, let
PATH(x, y, i)

mean there is a path from node x to node y of length at
most 2i.

• There is a path from x to y if and only if

PATH(x, y, dlog ne)
holds.
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The Proof (continued)

• For i > 0, PATH(x, y, i) if and only if there exists a z

such that PATH(x, z, i− 1) and PATH(z, y, i− 1).

• For PATH(x, y, 0), check the input graph or if x = y.

• Compute PATH(x, y, dlog ne) with a depth-first search
on a graph with nodes (x, y, i)s (see next page).

• Like stacks in recursive calls, we keep only the current
path of (x, y, i)s.

• The space requirement is proportional to the depth of
the tree: dlog ne.
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• Depth is dlog ne, and each node (x, y, i) needs space
O(log n).

• The total space is O(log2 n).
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The Proof (concluded): Algorithm for PATH(x, y, i)
1: if i = 0 then

2: if x = y or (x, y) ∈ E then

3: return true;

4: else

5: return false;

6: end if

7: else

8: for z = 1, 2, . . . , n do

9: if PATH(x, z, i− 1) and PATH(z, y, i− 1) then

10: return true;

11: end if

12: end for

13: return false;

14: end if
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The Relation between Nondeterministic Space and
Deterministic Space Only Quadratic

Corollary 24 Let f(n) ≥ log n be proper. Then

NSPACE(f(n)) ⊆ SPACE(f2(n)).

• Apply Savitch’s theorem to the configuration graph of
the NTM on the input.

• From p. 198, the configuration graph has O(cf(n))
nodes; hence each node takes space O(f(n)).

• But if we construct explicitly the whole graph before
applying Savitch’s theorem, we get O(cf(n)) space!
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The Proof (continued)

• The way out is not to generate the graph at all.

• Instead, keep the graph implicit.

• We check for connectedness only when i = 0 on p. 206,
by examining the input string G.

• There, given configurations x and y, we go over the
Turing machine’s program to determine if there is an
instruction that can turn x into y in one step.a

aThanks to a lively class discussion on October 15, 2003.
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The Proof (concluded)

• The z variable in the algorithm on p. 206 simply runs
through all possible valid configurations.

– Let z = 0, 1, . . . , O(cf(n)).

– Make sure z is a valid configuration before using it in
the recursive calls.a

• Each z has length O(f(n)) by Eq. (1) on p. 198.
aThanks to a lively class discussion on October 13, 2004.
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Implications of Savitch’s Theorem

• PSPACE = NPSPACE.

• Nondeterminism is less powerful with respect to space.

• Nondeterminism may be very powerful with respect to
time as it is not known if P = NP.
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Nondeterministic Space Is Closed under Complement

• Closure under complement is trivially true for
deterministic complexity classes (p. 184).

• It is known thata

coNSPACE(f(n)) = NSPACE(f(n)). (2)

• So

coNL = NL,

coNPSPACE = NPSPACE.

• But there are still no hints of coNP = NP.
aSzelepscényi (1987) and Immerman (1988).
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Reductions and Completeness
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Degrees of Difficulty

• When is a problem more difficult than another?

• B reduces to A if there is a transformation R which for
every input x of B yields an equivalent input R(x) of A.

– The answer to x for B is the same as the answer to
R(x) for A.

– There must be restrictions on the complexity of
computing R.

– Otherwise, R(x) might as well solve B.

∗ E.g., R(x) = “yes” if and only if x ∈ B!
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Degrees of Difficulty (concluded)

• We say problem A is at least as hard as problem B if B
reduces to A.

• This makes intuitive sense: If A is able to solve your
problem B after only a little bit of work (R), then A
must be at least as hard.

– If A were easy, it combined with R (which is also
easy) would make B easy, too.a

aThanks to a lively class discussion on October 13, 2009.
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Reduction

x
 yes/no
R
(
x
)

R


algorithm

for A


Solving problem B by calling the algorithm for problem once
and without further processing its answer.
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Commentsa

• Suppose B reduces to A via a transformation R.

• The input x is an instance of B.

• The output R(x) is an instance of A.

• R(x) may not span all possible instances of A.b

• So some instances of A may never appear in the range of
the reduction R.

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.
bR(x) may not be onto; Mr. Alexandr Simak (D98922040) on October

13, 2009.
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Reduction between Languages

• Language L1 is reducible to L2 if there is a function R

computable by a deterministic TM in space O(log n).

• Furthermore, for all inputs x, x ∈ L1 if and only if
R(x) ∈ L2.

• R is said to be a (Karp) reduction from L1 to L2.
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Reduction between Languages (concluded)

• Note that by Theorem 22 (p. 195), R runs in polynomial
time.

– In most cases, you do not need to distinguish
between L and P in proofs involving reductions.

• Suppose R is a reduction from L1 to L2.

• Then solving “R(x) ∈ L2?” is an algorithm for solving
“x ∈ L1?”a

aBut it may not be an optimal one.
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A Paradox?

• Degree of difficulty is not defined in terms of absolute
complexity.

• So a language B ∈ TIME(n99) may be “easier” than a
language A ∈ TIME(n3).

– This happens when B is reducible to A.

• But isn’t this a contradiction if the best algorithm for B
requires n99 steps?

• That is, how can a problem requiring n99 steps be
reducible to a problem solvable in n3 steps?
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Paradox Resolved

• The so-called contradiction does not hold.

• When we solve the problem “x ∈ B?” via “R(x) ∈ A?”,
we must consider the time spent by R(x) and its length
|R(x) |.

• If |R(x) | = Ω(n33), then answering “R(x) ∈ A?” takes
Ω((n33)3) = Ω(n99) steps, which is fine.

• Suppose, on the other hand, that |R(x) | = o(n33).

• Then R(x) must run in time Ω(n99) to make the overall
time for answering “R(x) ∈ A?” take Ω(n99) steps.

• In either case, the contradiction disappears.
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hamiltonian path

• A Hamiltonian path of a graph is a path that visits
every node of the graph exactly once.

• Suppose graph G has n nodes: 1, 2, . . . , n.

• A Hamiltonian path can be expressed as a permutation
π of { 1, 2, . . . , n } such that

– π(i) = j means the ith position is occupied by node j.

– (π(i), π(i + 1)) ∈ G for i = 1, 2, . . . , n− 1.

• hamiltonian path asks if a graph has a Hamiltonian
path.
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Reduction of hamiltonian path to sat

• Given a graph G, we shall construct a CNF R(G) such
that R(G) is satisfiable iff G has a Hamiltonian path.

• R(G) has n2 boolean variables xij , 1 ≤ i, j ≤ n.

• xij means

the ith position in the Hamiltonian path is
occupied by node j.
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1


2

3


4


5

6


7
8

9


x12 = x21 = x34 = x45 = x53 = x69 = x76 = x88 = x97 = 1;
π(1) = 2, π(2) = 1, π(3) = 4, π(4) = 5, π(5) = 3, π(6) =
9, π(7) = 6, π(8) = 8, π(9) = 7.
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The Clauses of R(G) and Their Intended Meanings

1. Each node j must appear in the path.

• x1j ∨ x2j ∨ · · · ∨ xnj for each j.

2. No node j appears twice in the path.

• ¬xij ∨ ¬xkj for all i, j, k with i 6= k.

3. Every position i on the path must be occupied.

• xi1 ∨ xi2 ∨ · · · ∨ xin for each i.

4. No two nodes j and k occupy the same position in the path.

• ¬xij ∨ ¬xik for all i, j, k with j 6= k.

5. Nonadjacent nodes i and j cannot be adjacent in the path.

• ¬xki ∨ ¬xk+1,j for all (i, j) 6∈ G and k = 1, 2, . . . , n− 1.
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The Proof

• R(G) contains O(n3) clauses.

• R(G) can be computed efficiently (simple exercise).

• Suppose T |= R(G).

• From clauses of 1 and 2, for each node j there is a
unique position i such that T |= xij .

• From clauses of 3 and 4, for each position i there is a
unique node j such that T |= xij .

• So there is a permutation π of the nodes such that
π(i) = j if and only if T |= xij .
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The Proof (concluded)

• Clauses of 5 furthermore guarantee that
(π(1), π(2), . . . , π(n)) is a Hamiltonian path.

• Conversely, suppose G has a Hamiltonian path

(π(1), π(2), . . . , π(n)),

where π is a permutation.

• Clearly, the truth assignment

T (xij) = true if and only if π(i) = j

satisfies all clauses of R(G).
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A Commenta

• An answer to “Is R(G) satisfiable?” does answer “Is G

Hamiltonian?”

• But a positive answer does not give a Hamiltonian path
for G.

– Providing witness is not a requirement of reduction.

• A positive answer to “Is R(G) satisfiable?” plus a
satisfying truth assignment does provide us with a
Hamiltonian path for G.

aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.
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Reduction of reachability to circuit value

• Note that both problems are in P.

• Given a graph G = (V,E), we shall construct a
variable-free circuit R(G).

• The output of R(G) is true if and only if there is a path
from node 1 to node n in G.

• Idea: the Floyd-Warshall algorithm.
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The Gates

• The gates are

– gijk with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n.

– hijk with 1 ≤ i, j, k ≤ n.

• gijk: There is a path from node i to node j without
passing through a node bigger than k.

• hijk: There is a path from node i to node j passing
through k but not any node bigger than k.

• Input gate gij0 = true if and only if i = j or (i, j) ∈ E.
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The Construction

• hijk is an and gate with predecessors gi,k,k−1 and
gk,j,k−1, where k = 1, 2, . . . , n.

• gijk is an or gate with predecessors gi,j,k−1 and hi,j,k,
where k = 1, 2, . . . , n.

• g1nn is the output gate.

• Interestingly, R(G) uses no ¬ gates: It is a monotone
circuit.
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Reduction of circuit sat to sat

• Given a circuit C, we will construct a boolean
expression R(C) such that R(C) is satisfiable iff C is.

– R(C) will turn out to be a CNF.

– R(C) is a depth-2 circuit; furthermore, each gate has
out-degree 1.

• The variables of R(C) are those of C plus g for each
gate g of C.

– The g’s propagate the truth values for the CNF.

• Each gate of C will be turned into equivalent clauses.

• Recall that clauses are ∧-ed together by definition.
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The Clauses of R(C)

g is a variable gate x: Add clauses (¬g ∨ x) and (g ∨ ¬x).

• Meaning: g ⇔ x.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (¬g).

• Meaning: g must be false to make R(C) true.

g is a ¬ gate with predecessor gate h: Add clauses
(¬g ∨ ¬h) and (g ∨ h).

• Meaning: g ⇔ ¬h.
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The Clauses of R(C) (concluded)

g is a ∨ gate with predecessor gates h and h′: Add
clauses (¬h ∨ g), (¬h′ ∨ g), and (h ∨ h′ ∨ ¬g).

• Meaning: g ⇔ (h ∨ h′).

g is a ∧ gate with predecessor gates h and h′: Add
clauses (¬g ∨ h), (¬g ∨ h′), and (¬h ∨ ¬h′ ∨ g).

• Meaning: g ⇔ (h ∧ h′).

g is the output gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

Note: If gate g feeds gates h1, h2, . . ., then variable g

appears in the clauses for h1, h2, . . . in R(C).
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An Example

∧
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(h1 ⇔ x1) ∧ (h2 ⇔ x2) ∧ (h3 ⇔ x3) ∧ (h4 ⇔ x4)

∧ [ g1 ⇔ (h1 ∧ h2) ] ∧ [ g2 ⇔ (h3 ∨ h4) ]

∧ [ g3 ⇔ (g1 ∧ g2) ] ∧ (g4 ⇔ ¬g2)

∧ [ g5 ⇔ (g3 ∨ g4) ] ∧ g5.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 234



An Example (concluded)

• In general, the result is a CNF.

• The CNF has size proportional to the circuit’s number
of gates.

• The CNF adds new variables to the circuit’s original
input variables.
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Composition of Reductions

Proposition 25 If R12 is a reduction from L1 to L2 and
R23 is a reduction from L2 to L3, then the composition
R12 ◦R23 is a reduction from L1 to L3.

• So reducibility is transitive.
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Completenessa

• As reducibility is transitive, problems can be ordered
with respect to their difficulty.

• Is there a maximal element?

• It is not altogether obvious that there should be a
maximal element.

– Many infinite structures (such as integers and real
numbers) do not have maximal elements.

• Hence it may surprise you that most of the complexity
classes that we have seen so far have maximal elements.

aCook (1971) and Levin (1971).
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Completeness (concluded)

• Let C be a complexity class and L ∈ C.
• L is C-complete if every L′ ∈ C can be reduced to L.

– Most complexity classes we have seen so far have
complete problems!

• Complete problems capture the difficulty of a class
because they are the hardest problems in the class.
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Hardness

• Let C be a complexity class.

• L is C-hard if every L′ ∈ C can be reduced to L.

• It is not required that L ∈ C.
• If L is C-hard, then by definition, every C-complete

problem can be reduced to L.a

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15,

2003.
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Illustration of Completeness and Hardness
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Closedness under Reductions

• A class C is closed under reductions if whenever L is
reducible to L′ and L′ ∈ C, then L ∈ C.

• P, NP, coNP, L, NL, PSPACE, and EXP are all closed
under reductions.
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