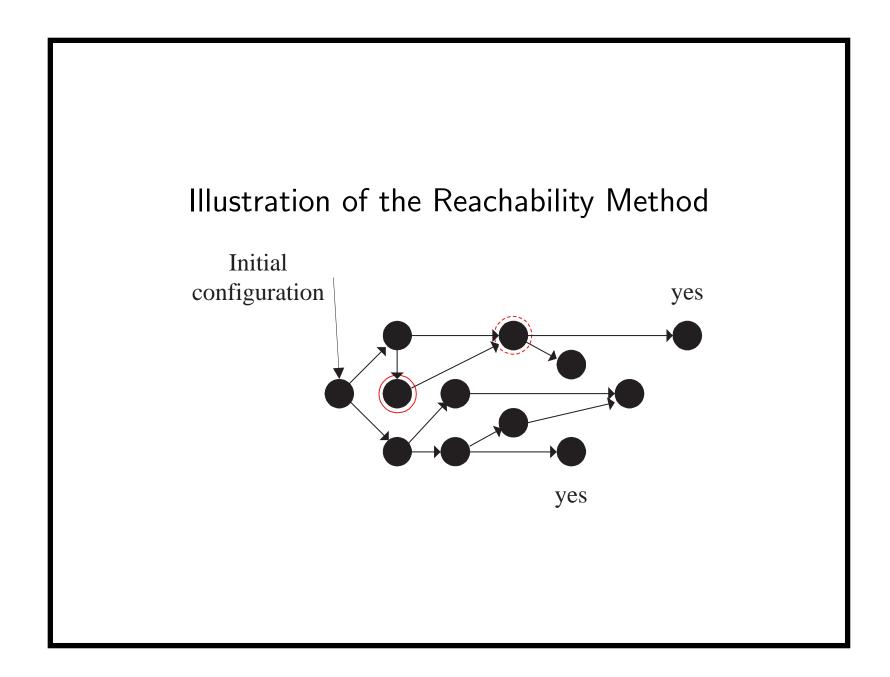
The Reachability Method

- The computation of a time-bounded TM can be represented by a directed graph.
- The TM's configurations constitute the nodes.
- Two nodes are connected by a directed edge if one yields the other.
- The start node representing the initial configuration has zero in degree.
- When the TM is nondeterministic, a node may have an out degree greater than one.



Relations between Complexity Classes

Theorem 22 Suppose f(n) is proper. Then

- 1. $SPACE(f(n)) \subseteq NSPACE(f(n)),$ $TIME(f(n)) \subseteq NTIME(f(n)).$
- 2. NTIME $(f(n)) \subseteq SPACE(f(n))$.
- 3. NSPACE $(f(n)) \subseteq \text{TIME}(k^{\log n + f(n)})$.
- Proof of 2:
 - Explore the computation *tree* of the NTM for "yes."
 - Specifically, generate a f(n)-bit sequence denoting the nondeterministic choices over f(n) steps.

Proof of Theorem 22(2)

- (continued)
 - Simulate the NTM based on the choices.
 - Recycle the space and then repeat the above steps
 until a "yes" is encountered or the tree is exhausted.
 - Each path simulation consumes at most O(f(n)) space because it takes O(f(n)) time.
 - The total space is O(f(n)) because space is recycled.

Proof of Theorem 22(3)

• Let k-string NTM

$$M = (K, \Sigma, \Delta, s)$$

with input and output decide $L \in NSPACE(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a (2k+1)-tuple

$$(q, w_1, u_1, w_2, u_2, \dots, w_k, u_k).$$

Proof of Theorem 22(3) (continued)

• We only care about

$$(q, i, w_2, u_2, \dots, w_{k-1}, u_{k-1}),$$

where i is an integer between 0 and n for the position of the first cursor.

• The number of configurations is therefore at most

$$|K| \times (n+1) \times |\Sigma|^{(2k-4)f(n)} = O(c_1^{\log n + f(n)})$$
 (1)

for some c_1 , which depends on M.

• Add edges to the configuration graph based on M's transition function.

Proof of Theorem 22(3) (concluded)

- $x \in L \Leftrightarrow$ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i, \ldots) [there may be many of them].
- This is REACHABILITY on a graph with $O(c_1^{\log n + f(n)})$ nodes.
- It is in TIME $(c^{\log n + f(n)})$ for some c because REACHABILITY \in TIME (n^j) for some j and

$$\left[c_1^{\log n + f(n)}\right]^j = (c_1^j)^{\log n + f(n)}.$$

Space-Bounded Computation and Proper Functions

- In the definition of *space-bounded* computations earlier, the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
 - Run the TM associated with f to produce an output of length f(n) first.
 - The space-bound computation must repeat a configuration if it runs for more than $c^{n+f(n)}$ steps for some c (p. 198).
 - So we can prevent infinite loops by counting steps against $c^{n+f(n)}$.

The Grand Chain of Inclusions

 $L\subseteq NL\subseteq P\subseteq NP\subseteq PSPACE\subseteq EXP.$

- By Corollary 19 (p. 191), we know $L \subseteq PSPACE$.
- The chain must break somewhere between L and PSPACE.^a
- It is suspected that all four inclusions are proper.
- But there are no proofs yet.^b

^aBill Gates (1996), "I keep bumping into that silly quotation attributed to me that says 640K of memory is enough."

^bCarl Friedrich Gauss (1777–1855), "I could easily lay down a multitude of such propositions, which one could neither prove nor dispose of."

Nondeterministic Space and Deterministic Space

• By Theorem 4 (p. 87),

$$NTIME(f(n)) \subseteq TIME(c^{f(n)}),$$

an exponential gap.

- There is no proof yet that the exponential gap is inherent.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic—a polynomial—by Savitch's theorem.

Savitch's Theorem

Theorem 23 (Savitch (1970))

REACHABILITY $\in SPACE(\log^2 n)$.

- Let G(V, E) be a graph with n nodes.
- For $i \geq 0$, let

mean there is a path from node x to node y of length at most 2^i .

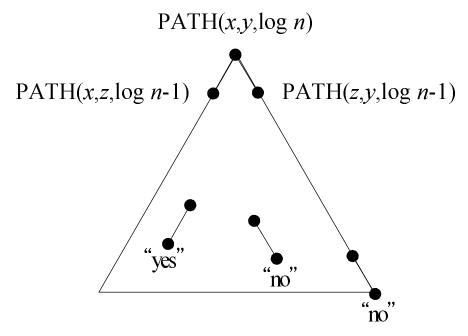
• There is a path from x to y if and only if

$$PATH(x, y, \lceil \log n \rceil)$$

holds.

The Proof (continued)

- For i > 0, PATH(x, y, i) if and only if there exists a z such that PATH(x, z, i 1) and PATH(z, y, i 1).
- For PATH(x, y, 0), check the input graph or if x = y.
- Compute PATH $(x, y, \lceil \log n \rceil)$ with a depth-first search on a graph with nodes (x, y, i)s (see next page).
- Like stacks in recursive calls, we keep only the current path of (x, y, i)s.
- The space requirement is proportional to the depth of the tree: $\lceil \log n \rceil$.



- Depth is $\lceil \log n \rceil$, and each node (x, y, i) needs space $O(\log n)$.
- The total space is $O(\log^2 n)$.

```
The Proof (concluded): Algorithm for PATH(x, y, i)
 1: if i = 0 then
   if x = y or (x, y) \in E then
   return true;
   else
 5: return false;
   end if
 7: else
     for z = 1, 2, ..., n do
   if PATH(x, z, i - 1) and PATH(z, y, i - 1) then
9:
         return true;
10:
   end if
11:
   end for
12:
     return false;
13:
14: end if
```

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic

Corollary 24 Let $f(n) \ge \log n$ be proper. Then $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}(f^2(n)).$

- Apply Savitch's theorem to the configuration graph of the NTM on the input.
- From p. 198, the configuration graph has $O(c^{f(n)})$ nodes; hence each node takes space O(f(n)).
- But if we construct explicitly the whole graph before applying Savitch's theorem, we get $O(c^{f(n)})$ space!

The Proof (continued)

- The way out is *not* to generate the graph at all.
- Instead, keep the graph implicit.
- We check for connectedness only when i = 0 on p. 206, by examining the input string G.
- There, given configurations x and y, we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step.^a

^aThanks to a lively class discussion on October 15, 2003.

The Proof (concluded)

- The z variable in the algorithm on p. 206 simply runs through all possible valid configurations.
 - Let $z = 0, 1, \dots, O(c^{f(n)})$.
 - Make sure z is a valid configuration before using it in the recursive calls.^a
- Each z has length O(f(n)) by Eq. (1) on p. 198.

^aThanks to a lively class discussion on October 13, 2004.

Implications of Savitch's Theorem

- PSPACE = NPSPACE.
- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if P = NP.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 184).
- It is known that^a

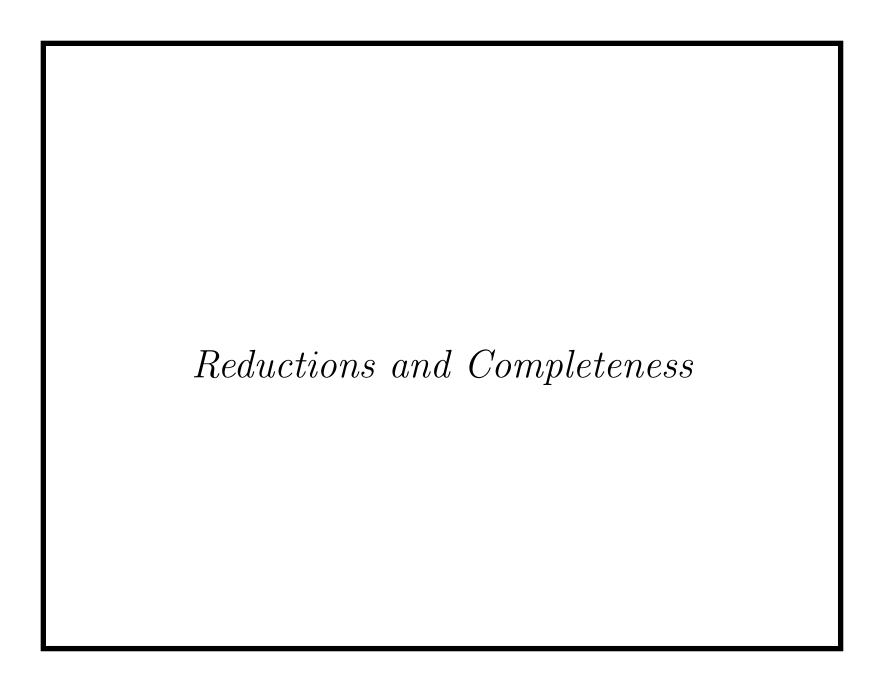
$$coNSPACE(f(n)) = NSPACE(f(n)).$$
 (2)

• So

$$coNL = NL,$$
 $coNPSPACE = NPSPACE.$

• But there are still no hints of coNP = NP.

^aSzelepscényi (1987) and Immerman (1988).



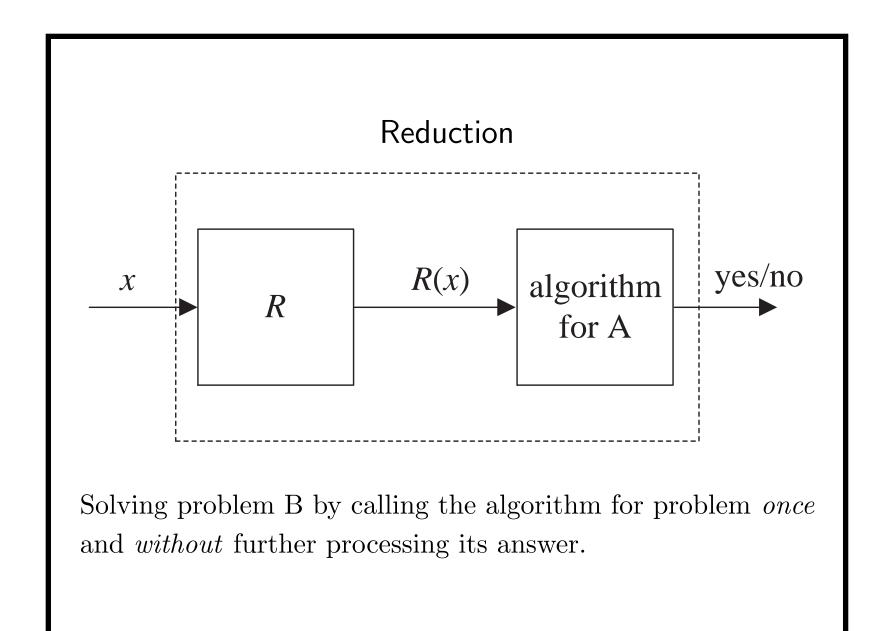
Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if there is a transformation R which for every input x of B yields an equivalent input R(x) of A.
 - The answer to x for B is the same as the answer to R(x) for A.
 - There must be restrictions on the complexity of computing R.
 - Otherwise, R(x) might as well solve B.
 - * E.g., R(x) = "yes" if and only if $x \in B!$

Degrees of Difficulty (concluded)

- We say problem A is at least as hard as problem B if B reduces to A.
- This makes intuitive sense: If A is able to solve your problem B after only a little bit of work (R), then A must be at least as hard.
 - If A were easy, it combined with R (which is also easy) would make B easy, too.^a

^aThanks to a lively class discussion on October 13, 2009.



Comments^a

- Suppose B reduces to A via a transformation R.
- The input x is an instance of B.
- The output R(x) is an instance of A.
- R(x) may not span all possible instances of A.^b
- So some instances of A may never appear in the range of the reduction R.

^aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.

 $^{{}^{\}mathrm{b}}R(x)$ may not be onto; Mr. Alexandr Simak (D98922040) on October 13, 2009.

Reduction between Languages

- Language L_1 is **reducible to** L_2 if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_1$ if and only if $R(x) \in L_2$.
- R is said to be a (**Karp**) reduction from L_1 to L_2 .

Reduction between Languages (concluded)

- Note that by Theorem 22 (p. 195), R runs in polynomial time.
 - In most cases, you do not need to distinguish
 between L and P in proofs involving reductions.
- Suppose R is a reduction from L_1 to L_2 .
- Then solving " $R(x) \in L_2$?" is an algorithm for solving " $x \in L_1$?" a

^aBut it may not be an optimal one.

A Paradox?

- Degree of difficulty is not defined in terms of absolute complexity.
- So a language $B \in TIME(n^{99})$ may be "easier" than a language $A \in TIME(n^3)$.
 - This happens when B is reducible to A.
- But isn't this a contradiction if the best algorithm for B requires n^{99} steps?
- That is, how can a problem requiring n^{99} steps be reducible to a problem solvable in n^3 steps?

Paradox Resolved

- The so-called contradiction does not hold.
- When we solve the problem " $x \in B$?" via " $R(x) \in A$?", we must consider the time spent by R(x) and its length |R(x)|.
- If $|R(x)| = \Omega(n^{33})$, then answering " $R(x) \in A$?" takes $\Omega((n^{33})^3) = \Omega(n^{99})$ steps, which is fine.
- Suppose, on the other hand, that $|R(x)| = o(n^{33})$.
- Then R(x) must run in time $\Omega(n^{99})$ to make the overall time for answering " $R(x) \in A$?" take $\Omega(n^{99})$ steps.
- In either case, the contradiction disappears.

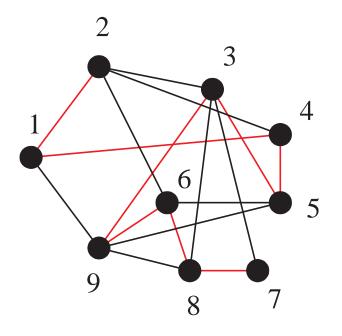
HAMILTONIAN PATH

- A **Hamiltonian path** of a graph is a path that visits every node of the graph exactly once.
- Suppose graph G has n nodes: $1, 2, \ldots, n$.
- A Hamiltonian path can be expressed as a permutation π of $\{1, 2, ..., n\}$ such that
 - $-\pi(i)=j$ means the *i*th position is occupied by node *j*.
 - $-(\pi(i), \pi(i+1)) \in G \text{ for } i = 1, 2, \dots, n-1.$
- HAMILTONIAN PATH asks if a graph has a Hamiltonian path.

Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF R(G) such that R(G) is satisfiable iff G has a Hamiltonian path.
- R(G) has n^2 boolean variables x_{ij} , $1 \le i, j \le n$.
- x_{ij} means

the ith position in the Hamiltonian path is occupied by node j.



$$x_{12} = x_{21} = x_{34} = x_{45} = x_{53} = x_{69} = x_{76} = x_{88} = x_{97} = 1;$$

 $\pi(1) = 2, \pi(2) = 1, \pi(3) = 4, \pi(4) = 5, \pi(5) = 3, \pi(6) = 9, \pi(7) = 6, \pi(8) = 8, \pi(9) = 7.$

The Clauses of ${\cal R}(G)$ and Their Intended Meanings

- 1. Each node j must appear in the path.
 - $x_{1j} \vee x_{2j} \vee \cdots \vee x_{nj}$ for each j.
- 2. No node j appears twice in the path.
 - $\neg x_{ij} \lor \neg x_{kj}$ for all i, j, k with $i \neq k$.
- 3. Every position i on the path must be occupied.
 - $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$ for each i.
- 4. No two nodes j and k occupy the same position in the path.
 - $\neg x_{ij} \vee \neg x_{ik}$ for all i, j, k with $j \neq k$.
- 5. Nonadjacent nodes i and j cannot be adjacent in the path.
 - $\neg x_{ki} \lor \neg x_{k+1,j}$ for all $(i,j) \not\in G$ and $k=1,2,\ldots,n-1$.

The Proof

- R(G) contains $O(n^3)$ clauses.
- R(G) can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From clauses of 1 and 2, for each node j there is a unique position i such that $T \models x_{ij}$.
- From clauses of 3 and 4, for each position i there is a unique node j such that $T \models x_{ij}$.
- So there is a permutation π of the nodes such that $\pi(i) = j$ if and only if $T \models x_{ij}$.

The Proof (concluded)

- Clauses of 5 furthermore guarantee that $(\pi(1), \pi(2), \dots, \pi(n))$ is a Hamiltonian path.
- Conversely, suppose G has a Hamiltonian path

$$(\pi(1),\pi(2),\ldots,\pi(n)),$$

where π is a permutation.

• Clearly, the truth assignment

$$T(x_{ij}) =$$
true if and only if $\pi(i) = j$

satisfies all clauses of R(G).

A Comment^a

- An answer to "Is R(G) satisfiable?" does answer "Is G Hamiltonian?"
- But a positive answer does not give a Hamiltonian path for G.
 - Providing witness is not a requirement of reduction.
- A positive answer to "Is R(G) satisfiable?" plus a satisfying truth assignment does provide us with a Hamiltonian path for G.

^aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.

Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph G = (V, E), we shall construct a variable-free circuit R(G).
- The output of R(G) is true if and only if there is a path from node 1 to node n in G.
- Idea: the Floyd-Warshall algorithm.

The Gates

- The gates are
 - $-g_{ijk}$ with $1 \le i, j \le n$ and $0 \le k \le n$.
 - $-h_{ijk}$ with $1 \leq i, j, k \leq n$.
- g_{ijk} : There is a path from node i to node j without passing through a node bigger than k.
- h_{ijk} : There is a path from node i to node j passing through k but not any node bigger than k.
- Input gate $g_{ij0} = \text{true}$ if and only if i = j or $(i, j) \in E$.

The Construction

- h_{ijk} is an AND gate with predecessors $g_{i,k,k-1}$ and $g_{k,j,k-1}$, where k = 1, 2, ..., n.
- g_{ijk} is an OR gate with predecessors $g_{i,j,k-1}$ and $h_{i,j,k}$, where k = 1, 2, ..., n.
- g_{1nn} is the output gate.
- Interestingly, R(G) uses no \neg gates: It is a **monotone** circuit.

Reduction of CIRCUIT SAT to SAT

- Given a circuit C, we will construct a boolean expression R(C) such that R(C) is satisfiable iff C is.
 - -R(C) will turn out to be a CNF.
 - -R(C) is a depth-2 circuit; furthermore, each gate has out-degree 1.
- The variables of R(C) are those of C plus g for each gate g of C.
 - The g's propagate the truth values for the CNF.
- Each gate of C will be turned into equivalent clauses.
- Recall that clauses are \land -ed together by definition.

The Clauses of R(C)

g is a variable gate x: Add clauses $(\neg g \lor x)$ and $(g \lor \neg x)$.

• Meaning: $g \Leftrightarrow x$.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause $(\neg g)$.

• Meaning: g must be false to make R(C) true.

g is a \neg gate with predecessor gate h: Add clauses $(\neg g \lor \neg h)$ and $(g \lor h)$.

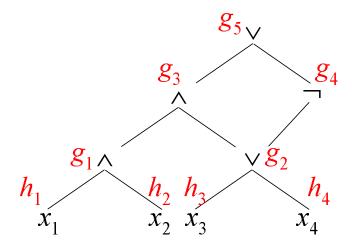
• Meaning: $g \Leftrightarrow \neg h$.

The Clauses of R(C) (concluded)

- g is a \vee gate with predecessor gates h and h': Add clauses $(\neg h \vee g)$, $(\neg h' \vee g)$, and $(h \vee h' \vee \neg g)$.
 - Meaning: $g \Leftrightarrow (h \vee h')$.
- g is a \land gate with predecessor gates h and h': Add clauses $(\neg g \lor h)$, $(\neg g \lor h')$, and $(\neg h \lor \neg h' \lor g)$.
 - Meaning: $g \Leftrightarrow (h \land h')$.
- g is the output gate: Add clause (g).
 - Meaning: g must be true to make R(C) true.

Note: If gate g feeds gates h_1, h_2, \ldots , then variable g appears in the clauses for h_1, h_2, \ldots in R(C).

An Example



$$(h_1 \Leftrightarrow x_1) \land (h_2 \Leftrightarrow x_2) \land (h_3 \Leftrightarrow x_3) \land (h_4 \Leftrightarrow x_4)$$

$$\land \quad [g_1 \Leftrightarrow (h_1 \land h_2)] \land [g_2 \Leftrightarrow (h_3 \lor h_4)]$$

$$\land \quad [g_3 \Leftrightarrow (g_1 \land g_2)] \land (g_4 \Leftrightarrow \neg g_2)$$

$$\land \quad [g_5 \Leftrightarrow (g_3 \vee g_4)] \land g_5.$$

An Example (concluded)

- In general, the result is a CNF.
- The CNF has size proportional to the circuit's number of gates.
- The CNF adds new variables to the circuit's original input variables.

Composition of Reductions

Proposition 25 If R_{12} is a reduction from L_1 to L_2 and R_{23} is a reduction from L_2 to L_3 , then the composition $R_{12} \circ R_{23}$ is a reduction from L_1 to L_3 .

• So reducibility is transitive.

Completeness^a

- As reducibility is transitive, problems can be ordered with respect to their difficulty.
- Is there a maximal element?
- It is not altogether obvious that there should be a maximal element.
 - Many infinite structures (such as integers and real numbers) do not have maximal elements.
- Hence it may surprise you that most of the complexity classes that we have seen so far have maximal elements.

^aCook (1971) and Levin (1971).

Completeness (concluded)

- Let \mathcal{C} be a complexity class and $L \in \mathcal{C}$.
- L is C-complete if every $L' \in C$ can be reduced to L.
 - Most complexity classes we have seen so far have complete problems!
- Complete problems capture the difficulty of a class because they are the hardest problems in the class.

Hardness

- Let \mathcal{C} be a complexity class.
- L is C-hard if every $L' \in C$ can be reduced to L.
- It is not required that $L \in \mathcal{C}$.
- If L is C-hard, then by definition, every C-complete problem can be reduced to L.^a

^aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15, 2003.

Illustration of Completeness and Hardness

Closedness under Reductions

- A class C is **closed under reductions** if whenever L is reducible to L' and $L' \in C$, then $L \in C$.
- P, NP, coNP, L, NL, PSPACE, and EXP are all closed under reductions.