The Reachability Method

The computation of a time-bounded TM can be
represented by a directed graph.

The TM'’s configurations constitute the nodes.

Two nodes are connected by a directed edge if one yields
the other.

The start node representing the initial configuration has

zero in degree.

When the TM is nondeterministic, a node may have an
out degree greater than one.
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lllustration of the Reachability Method
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Relations between Complexity Classes

Theorem 22 Suppose f(n) is proper. Then

. SPACE(f(n)) C NSPACE(f(n)),
TIME(f(n)) € NTIME(f(n)).
C

. NTIME(f(n)) C SPACE(f(n)).

. NSPACE(f(n)) C TIME(klogn+/(n)).

Proof of 2:
— Explore the computation tree of the NTM for “yes.”

— Specifically, generate a f(n)-bit sequence denoting
the nondeterministic choices over f(n) steps.
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Proof of Theorem 22(2)

e (continued)
— Simulate the NTM based on the choices.

— Recycle the space and then repeat the above steps

until a “yes” is encountered or the tree is exhausted.

— Each path simulation consumes at most O(f(n))

space because it takes O(f(n)) time.
— The total space is O(f(n)) because space is recycled.
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Proof of Theorem 22(3)
e Let k-string NTM

M = (K,X,A,s)

with input and output decide L € NSPACE(f(n)).

e Use the reachability method on the configuration graph
of M on input = of length n.

e A configuration is a (2k + 1)-tuple

(Q7wlaulaw27u27 <. ,’UJk;,’U/k).
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Proof of Theorem 22(3) (continued)

We only care about

(q, 1, wa, U2, ...y W1, Uk—1),

where 7 is an integer between 0 and n for the position of

the first cursor.

The number of configurations is therefore at most

K| x (n41) x [g|@F=D500) = O™ My (1)

for some c¢;, which depends on M.

Add edges to the configuration graph based on M’s

transition function.
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Proof of Theorem 22(3) (concluded)

e r € L & there is a path in the configuration graph from
the initial configuration to a configuration of the form
(“yes”,i,...) [there may be many of them)].

e This is REACHABILITY on a graph with O(cllog n+f(n))

nodes.

o It is in TIME(c!°8"*+/ (™) for some ¢ because

REACHABILITY € TIME(n/) for some j and

log n n J \log n
[Clg +f( )} :(C{)lg +f( )|
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Space-Bounded Computation and Proper Functions

e In the definition of space-bounded computations earlier,
the TMs are not required to halt at all.

e When the space is bounded by a proper function f,

computations can be assumed to halt:

— Run the TM associated with f to produce an output
of length f(n) first.

— The space-bound computation must repeat a
configuration if it runs for more than ¢" /(") steps
for some ¢ (p. 198).

— So we can prevent infinite loops by counting steps
against ¢t/ (").
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The Grand Chain of Inclusions
LL C NL C P C NP C PSPACE C EXP.
e By Corollary 19 (p. 191), we know L. C PSPACE.

e The chain must break somewhere between L. and
PSPACE.2

e It is suspected that all four inclusions are proper.

e But there are no proofs yet.b

2Bill Gates (1996), “I keep bumping into that silly quotation at-

tributed to me that says 640K of memory is enough.”
PCarl Friedrich Gauss (1777-1855), “I could easily lay down a mul-

titude of such propositions, which one could neither prove nor dispose

Of 7
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Nondeterministic Space and Deterministic Space

By Theorem 4 (p. 87),

NTIME(f(n)) C TIME(c/ ™),

an exponential gap.

There is no proof yet that the exponential gap is

inherent.
How about NSPACE vs. SPACE?

Surprisingly, the relation is only quadratic—a
polynomial—by Savitch’s theorem.
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Savitch's Theorem

Theorem 23 (Savitch (1970))

REACHABILITY € SPACE(log” n).

e Let G(V, F) be a graph with n nodes.

e For i > 0, let
PATH(x,y,1)

mean there is a path from node x to node y of length at

most 2°.

e There is a path from z to y if and only if

PATH(z,y, [logn|)
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The Proof (continued)

For ¢ > 0, PATH(z, y, ) if and only if there exists a z
such that PATH(z, 2,7 — 1) and PATH(z,y,i — 1).

For PATH(x,y,0), check the input graph or if z = .

Compute PATH(z, y, [logn]) with a depth-first search

on a graph with nodes (z,y,7)s (see next page).

Like stacks in recursive calls, we keep only the current

path of (x,y,1)s.

The space requirement is proportional to the depth of
the tree: [logn].
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PATH(x,y,log n)

PATH(x.z,log n-1) PATH(z,y,log n-1)

e Depth is [logn], and each node (x,y,%) needs space
O(logn).

e The total space is O(log” n).
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The Proof (concluded): Algorithm for PATH(x, vy, ?)
: if © =0 then
if =y or (z,y) € F then
return true;

else

end if
. else
for z=1,2,...,ndo
if PATH(x,z,i — 1) and PATH(z,y,7 — 1) then
10: return true;
11: end if

end for

1
2
3
4
5: return false;
6
7
8
9

return false;
. end if
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The Relation between Nondeterministic Space and
Deterministic Space Only Quadratic

Corollary 24 Let f(n) > logn be proper. Then
NSPACE(f(n)) € SPACE(f*(n)).

e Apply Savitch’s theorem to the configuration graph of
the NTM on the input.

e From p. 198, the configuration graph has O(c/(™)

nodes; hence each node takes space O(f(n)).

e But if we construct explicitly the whole graph before

applying Savitch’s theorem, we get O(c/ (™) space!
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The Proof (continued)

The way out is not to generate the graph at all.
Instead, keep the graph implicit.

We check for connectedness only when 2 = 0 on p. 2006,

by examining the input string G.

There, given configurations x and y, we go over the
Turing machine’s program to determine if there is an

instruction that can turn x into y in one step.?

@Thanks to a lively class discussion on October 15, 2003.
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The Proof (concluded)

e The z variable in the algorithm on p. 206 simply runs
through all possible valid configurations.

— Let 2=0,1,...,0(c/™).

— Make sure z is a valid configuration before using it in

the recursive calls.?

e Each z has length O(f(n)) by Eq. (1) on p. 198.

2Thanks to a lively class discussion on October 13, 2004.
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Implications of Savitch's Theorem

e PSPACE = NPSPACE.
e Nondeterminism is less powerful with respect to space.

e Nondeterminism may be very powerful with respect to

time as it is not known if P = NP.
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Nondeterministic Space Is Closed under Complement

e Closure under complement is trivially true for

deterministic complexity classes (p. 184).

e It is known that?

coNSPACE(f(n)) = NSPACE(f(n)). (2)

coNL NL,
coNPSPACE NPSPACE.

e But there are still no hints of coNP = NP.

2Szelepscényi (1987) and Immerman (1988).
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Reductions and Completeness
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Degrees of Difficulty

e When is a problem more difficult than another?
e B reduces to A if there is a transformation R which for
every input x of B yields an equivalent input R(x) of A.

— The answer to = for B is the same as the answer to
R(x) for A.

— There must be restrictions on the complexity of
computing R.

— Otherwise, R(x) might as well solve B.
x F.g., R(x) = “yes” if and only if x € B!
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Degrees of Difficulty (concluded)

e We say problem A is at least as hard as problem B if B
reduces to A.

e This makes intuitive sense: If A is able to solve your
problem B after only a little bit of work (R), then A
must be at least as hard.

— If A were easy, it combined with R (which is also

easy) would make B easy, too.?

@Thanks to a lively class discussion on October 13, 2009.
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Reduction

. algorithm

Solving problem B by calling the algorithm for problem once

and without further processing its answer.
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Comments?
Suppose B reduces to A via a transformation R.
The input z is an instance of B.

The output R(x) is an instance of A.

R(x) may not span all possible instances of A.P

So some instances of A may never appear in the range of
the reduction R.

2Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.
b R(z) may not be onto; Mr. Alexandr Simak (D98922040) on October

13, 2009.
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Reduction between Languages

e Language L, is reducible to L5 if there is a function R
computable by a deterministic TM in space O(logn).

e Furthermore, for all inputs =, x € Ly if and only if
R(CC) € Lo.

e R is said to be a (Karp) reduction from L; to L.
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Reduction between Languages (concluded)

Note that by Theorem 22 (p. 195), R runs in polynomial

time.

— In most cases, you do not need to distinguish

between L and P in proofs involving reductions.
e Suppose R is a reduction from L to Ls.

e Then solving “R(x) € Ls?” is an algorithm for solving
“:,U E Ll?”a

2But it may not be an optimal one.
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A Paradox?

Degree of difficulty is not defined in terms of absolute

complexity.

So a language B € TIME(n°?) may be “easier” than a
language A € TIME(n?).

— This happens when B is reducible to A.

But isn’t this a contradiction if the best algorithm for B
requires n”? steps?

That is, how can a problem requiring n”? steps be
reducible to a problem solvable in n® steps?
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Paradox Resolved
The so-called contradiction does not hold.

When we solve the problem “x € B?” via “R(x) € A?”,
we must consider the time spent by R(x) and its length

| B(z) |

If \R( )| = Q(n33), then answering “R(z) € A?” takes
Q((n3?)3) = Q(n%) steps, which is fine.

Suppose, on the other hand, that | R(x) | = o(n33).

Then R(x) must run in time Q(n°’) to make the overall
time for answering “R(z) € A?” take Q(n%) steps.

In either case, the contradiction disappears.
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HAMILTONIAN PATH

A Hamiltonian path of a graph is a path that visits
every node of the graph exactly once.

Suppose graph G has n nodes: 1,2,...,n.

A Hamiltonian path can be expressed as a permutation

mof {1,2,...,n} such that

— (%) = j means the ith position is occupied by node j.

— (r(@),7(i+1)eGfori=1,2,...,n—1.

HAMILTONIAN PATH asks if a graph has a Hamiltonian
path.
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Reduction of HAMILTONIAN PATH to SAT

e Given a graph GG, we shall construct a CNF R(G) such
that R(G) is satisfiable iff G has a Hamiltonian path.

e R(G) has n? boolean variables z;;, 1 <i,5 < n.

® IT;; Imeans

the ith position in the Hamiltonian path is
occupied by node j.
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The Clauses of R(G) and Their Intended Meanings

1. Each node 5 must appear in the path.

® T1; Vxo; V- -V xy,; for each j.

. No node j appears twice in the path.
e —x;; Vxy,; for all 7,5, k with ¢ # k.

. Every position ¢ on the path must be occupied.

® ;1 VxioV- -V ax, for each 1.

. No two nodes 5 and k£ occupy the same position in the path.

o —x,;; V x; for all 7,7, k with 5 # k.

. Nonadjacent nodes 7 and 7 cannot be adjacent in the path.

o —Tp; V Xy, forall (i,5) G and k=1,2,...,n—1.
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The Proof

R(G) contains O(n?) clauses.

R(G) can be computed efficiently (simple exercise).
Suppose T' = R(G).

From clauses of 1 and 2, for each node j there is a

unique position ¢ such that 7' = z;;.

From clauses of 3 and 4, for each position ¢ there is a

unique node j such that 7' = z;;.

So there is a permutation 7 of the nodes such that

m(i) = j if and only if T |= z;;.
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The Proof (concluded)

e Clauses of 5 furthermore guarantee that
(w(1),7(2),...,m(n)) is a Hamiltonian path.

e Conversely, suppose GG has a Hamiltonian path

where 7 is a permutation.

e Clearly, the truth assignment
T(z;;) = true if and only if 7(i) = j

satisfies all clauses of R(G).
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A Comment?

e An answer to “Is R(G) satisfiable?” does answer “Is G

Hamiltonian?”

e But a positive answer does not give a Hamiltonian path

for G.

— Providing witness is not a requirement of reduction.

e A positive answer to “Is R(G) satisfiable?” plus a

satisfying truth assignment does provide us with a
Hamiltonian path for G.

2Contributed by Ms. Amy Liu (J94922016) on May 29, 2006.
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Reduction of REACHABILITY to CIRCUIT VALUE
e Note that both problems are in P.

e Given a graph G = (V, E), we shall construct a
variable-free circuit R(G).

e The output of R(G) is true if and only if there is a path
from node 1 to node n in G.

e Idea: the Floyd-Warshall algorithm.
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The Gates
The gates are
— gijr With 1 < 4,5 <nand 0 <k <n.
— hijr with 1 <14,5,k <n.

gijk: There is a path from node 7 to node j without
passing through a node bigger than k.

hi;i: There is a path from node ¢ to node j passing
through k& but not any node bigger than k.

Input gate g;;0 = true if and only if i = j or (¢,5) € E.
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The Construction

hiji 18 an AND gate with predecessors g; . x—1 and
9k, jk—1, Where k =1,2,... n.

gijk 15 an OR gate with predecessors g; j r—1 and h; j &,

where k =1,2,...,n.
Jinn 1s the output gate.

Interestingly, R(G) uses no — gates: It is a monotone

circuit.
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Reduction of CIRCUIT SAT to SAT
Given a circuit C', we will construct a boolean
expression R(C') such that R(C) is satisfiable iff C' is.
— R(C) will turn out to be a CNF.
— R(C) is a depth-2 circuit; furthermore, each gate has

out-degree 1.

The variables of R(C) are those of C' plus g for each
gate g of C.

— The g’s propagate the truth values for the CNF.
Each gate of C' will be turned into equivalent clauses.

Recall that clauses are A-ed together by definition.
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The Clauses of R(C)

g is a variable gate x: Add clauses (—g V x) and (g V —x).
e Meaning: g & .

g is a true gate: Add clause (g).
e Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (—g).
e Meaning: g must be false to make R(C') true.

g is a — gate with predecessor gate h: Add clauses
(—g VvV —h) and (g V h).

e Meaning: g & —h.
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The Clauses of R(C') (concluded)

g is a V gate with predecessor gates h and h': Add
clauses (=h V g), (-h' V g), and (h V A’ V —g).

e Meaning: g < (hV H').
g is a A gate with predecessor gates h and h': Add
clauses (mg V h), (—gV h'), and (=h V =h' V g).
e Meaning: g < (h A R).
g is the output gate: Add clause (g).
e Meaning: g must be true to make R(C) true.

Note: If gate g feeds gates hq, ho, ..., then variable g
appears in the clauses for hi, ho, ... in R(C).
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An Example

(hl <~ 561) VAN (hg <~ CEQ) AN (hg <~ 333) A\ (h4 p— £E4)

g1 (ha Ah2) [ A[ge & (h3V hy)]
(93 < (1 AN g2) | A (94 & —g2)
(g5 < (93 V g4) | A gs.
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An Example (concluded)

e In general, the result is a CNF.

e The CNF has size proportional to the circuit’s number
of gates.

e The CNF adds new variables to the circuit’s original

input variables.
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Composition of Reductions

Proposition 25 If Ri5 is a reduction from Ly to Lo and
Ro3 is a reduction from Lo to L3, then the composition

R15 0 Ro3 is a reduction from Ly to Ls.

e So reducibility is transitive.
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Completeness?

As reducibility is transitive, problems can be ordered
with respect to their difficulty.

Is there a mazimal element?

It is not altogether obvious that there should be a

maximal element.
— Many infinite structures (such as integers and real

numbers) do not have maximal elements.

Hence it may surprise you that most of the complexity

classes that we have seen so far have maximal elements.

2Cook (1971) and Levin (1971).
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Completeness (concluded)

e Let C be a complexity class and L € C.

e L is C-complete if every L’ € C can be reduced to L.
— Most complexity classes we have seen so far have

complete problems!

e Complete problems capture the difficulty of a class
because they are the hardest problems in the class.
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Hardness

Let C be a complexity class.

L is C-hard if every L’ € C can be reduced to L.

It is not required that L € C.

If L is C-hard, then by definition, every C-complete

problem can be reduced to L.?

2Contributed by Mr. Ming-Feng Tsai (D92922003) on October 15,
2003.
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lllustration of Completeness and Hardness
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Closedness under Reductions

e A class C is closed under reductions if whenever L is

reducible to L' and L’ € C, then L € C.

e P, NP, coNP, L, NL, PSPACE, and EXP are all closed

under reductions.
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