Complementing a TM's Halting States

e Let M decide L, and M’ be M after “yes” <> “no”.

e If M is a deterministic TM, then M’ decides L

e But if M is an NTM, then M’ may not decide L.
— It is possible that both M and M’ accept = (see next
page).
— When this happens, M and M’ accept languages
that are not complements of each other.
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Time Complexity under Nondeterminism

e Nondeterministic machine N decides L in time f(n),
where f: N — N, if

— N decides L, and

— for any x € X*, N does not have a computation path
longer than f(|x|).

e We charge only the “depth” of the computation tree.
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Time Complexity Classes under Nondeterminism

e NTIME(f(n)) is the set of languages decided by NTMs
within time f(n).

e NTIME(f(n)) is a complexity class.
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NP

NP = | J NTIME(n").
k>0

Clearly P C NP.

Think of NP as efficiently verifiable problems.
— Boolean satisfiability (p. 90 and p. 153).

The most important open problem in computer science
is whether P = NP.
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Simulating Nondeterministic TMs

Surprisingly, nondeterminism does not add power to TMs.

Theorem 4 Suppose language L is decided by an NTM N
in time f(n). Then it is decided by a 3-string deterministic
TM M in time O(c™), where ¢ > 1 is some constant
depending on N.

e On input x, M goes down every computation path of N
using depth-first search.?
— M does not need to know f(n).

— As N is time-bounded, the depth-first search will not
run indefinitely.

2You may have to switch to breadth-first search if f(n) can be infinite.
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The Proof (concluded)

e If some path leads to “yes,” then M enters the “yes”
state.

e If none of the paths leads to “yes,” then M enters the
“no” state.

e Note that every path has a finite length by definition.

Corollary 5 NTIME(f(n))) C .., TIME(c/("™).
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NTIME vs. TIME

e Does converting an NTM into a TM require exploring
all of the computation paths of the NTM as done in
Theorem 4 (p. 87)7

e This is the most important question in theory with

practical implications.
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A Nondeterministic Algorithm for Satisfiability

® is a boolean formula with n variables.
cfort:=1,2,...,ndo
Guess x; € {0, 1}; {Nondeterministic choice.}
. end for

. {Verification: }

44 79

yes

. else

44 7

: no ;
: end lf

1
2
3
4
5. if ¢(x1,29,...,2,) =1 then
§
7
8
9
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The Schematic Computation Tree for Satisfiability

[13 L3 I 11 b2 N 11 b2 I 11 b2 N 19 b2 I 11 b5 BN 1 b2 I 1 "« ’”

N0 &S NO y&S ¥ N0 N0 NO V&S
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Analysis

e The algorithm decides language {¢ : ¢ is satisfiable}.

— The computation tree is a complete binary tree of
depth n.

Every computation path corresponds to a particular
truth assignment out of 2.

¢ is satisfiable iff there is a truth assignment that
satisfies ¢.

But there is a truth assignment that satisfies ¢ iff
there is a computation path that results in “yes.”

e General paradigm: Guess a “proot” and then verify it.
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The Traveling Salesman Problem

We are given n cities 1,2,...,n and integer distances d;;

between any two cities ¢ and j.
Assume d;; = d;; for convenience.

The traveling salesman problem (TsP) asks for the
total distance of the shortest tour of the cities.

The decision version TSP (D) asks if there is a tour with
a total distance at most B, where B is an input.

Both problems are extremely important but equally
hard (p. 348 and p. 442).
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A Nondeterministic Algorithm for TSP (D)
for:=1,2,...,ndo
Guess z; € {1,2,...,n}; {The ith city.}*
end for
Tyl 1= T1;
{ Verification stage:}

if 1,22,..., 7, are distinct and ) ) | dy; ;,., < B then

44 2

yes
else

“DO” ;

end if

1:
2:
3:
4:
5:
6:
T
8:
9:

[
<

2Can be made into a series of logy n binary choices for each x; so
that the next-state count (2) is a constant, independent of input size.
Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.
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Analysis

e Suppose the input graph contains at least one tour of

the cities with a total distance at most B.
e Then there is a computation path that leads to “yes.”?

e Suppose the input graph contains no tour of the cities

with a total distance at most B.

e Then every computation path leads to “no.”

2t does not mean the algorithm will follow that path. It just means

such a computation path exists.
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Nondeterministic Space Complexity Classes

Let L be a language.

Then
L € NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).
NSPACE(f(n)) is a set of languages.

As in the linear speedup theorem (Theorem 3 on p. 67),

constant coeflficients do not matter.
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Graph Reachability

Let G(V, F) be a directed graph (digraph).

REACHABILITY asks if, given nodes a and b, does G
contain a path from a to b7

Can be easily solved in polynomial time by breadth-first
search.

How about the nondeterministic space complexity?
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The First Try in NSPACE(n logn)
. 21 := a; {Assume a # b.}
. fort=2,3,...,ndo
Guess x; € {v1,v2,...,v,}; {The ith node.}
. end for
 fort=2,3,...,ndo
if (x;_1,%;) ¢ E then

44 .
no”;

end if
if x; = b then

44 79

yes';
end if

. end for

. “no” :

©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 98



In Fact REACHABILITY € NSPACE(logn)
1 T = a;
2: for 1 =2,3,...,ndo
3:  Guess y € {v1,va,...,v,}; {The next node.}

if (z,y) ¢ F then

“HO” ;

end if
if y = b then

44 79

yes;
end if

10: X =1,
11: end for

7

12: “no”;
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Space Analysis

Variables i, x, and y each require O(logn) bits.

Testing (z,y) € E is accomplished by consulting the
input string with counters of O(logn) bits long.

Hence

REACHABILITY € NSPACE(logn).

— REACHABILITY with more than one terminal node
also has the same complexity.

REACHABILITY € P (p. 193).
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Undecidability
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It seemed unworthy of a grown man
to spend his time on such trivialities,
but what was I to do?

— Bertrand Russell (1872-1970),

Autobiography, Vol. 1
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Infinite Sets

e A set is countable if it is finite or if it can be put in
one-one correspondence with N ={0,1,...}, the set of

natural numbers.

— Set of integers Z.
* 0« 0.
* 1= 1,2 3,3<5,....
x —1 2, —2—4,-3-—6,....

Set of positive integers Z1: 7 — 1 < 1.

Set of odd integers: (i —1)/2 < 1.

Set of rational numbers: See next page.
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Rational Numbers Are Countable

1H—
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Cardinality
e For any set A, define |A| as A’s cardinality (size).
e T'wo sets are said to have the same cardinality, or
Al =|B|] or A~ B,

if there exists a one-to-one correspondence between their

elements.

o 24 denotes set A’s power set, that is {B: B C A}.

— E.g., {0,1}’s power set is

20043 = (0, {0},{1},{0,1}}.
— If |A| = k, then |24 = 2%,
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Cardinality (concluded)

Define |A| < |Bj| if there is a one-to-one correspondence

between A and a subset of B'’s.

Define |A| < |B| if |A| < |B| but |A] # |Bj|.
Obviously, if A C B, then |A| < |Bj.

But if A C B, then |A| < |B|?
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Cardinality and Infinite Sets

e If A and B are infinite sets, it is possible that A C B yet
Al = [B].
— The set of integers properly contains the set of odd
integers.
— But the set of integers has the same cardinality as

the set of odd integers (p. 103).

e A lot of “paradoxes” arise.
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Galileo’s* Paradox (1638)

The squares of the positive integers can be placed in
one-to-one correspondence with all the positive integers.

This is contrary to the axiom of Euclid® that the whole

is greater than any of its proper parts.

Resolution of paradoxes: Pick the notion that results in

“better” mathematics.

The difference between a mathematical paradox and a

contradiction is often a matter of opinion.

2Galileo (1564-1642).
PEuclid (325 B.C.-265 B.C.).
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Hilbert's®* Paradox of the Grand Hotel

For a hotel with a finite number of rooms with all the

rooms occupied, a new guest will be turned away.

Now imagine a hotel with an infinite number of rooms,

all of which are occupied.

A new guest comes and asks for a room.

“But of course!” exclaims the proprietor.

He moves the person previously occupying Room 1 to
Room 2, the person from Room 2 to Room 3, and so on.

e The new customer now occupies Room 1.

aDavid Hilbert (1862-1943).
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Hilbert's Paradox of the Grand Hotel (concluded)

Now imagine a hotel with an infinite number of rooms,

all taken up.

An infinite number of new guests come in and ask for

rooms.
“Certainly,” says the proprietor.

He moves the occupant of Room 1 to Room 2, the

occupant of Room 2 to Room 4, and so on.

Now all odd-numbered rooms become free and the

infinity of new guests can be accommodated in them.

“There are many rooms in my Father’s house, and I am
going to prepare a place for you.” (John 14:3)
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David Hilbert (1862-1943)
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Cantor's® Theorem

Theorem 6 The set of all subsets of N (2V) is infinite and

not countable.

")

e Suppose (2V) is countable with f : N — 2N being a

bijection.”

e Consider the set B={keN:k¢ f(k)} CN.

e Suppose B = f(n) for some n € N.

2Georg Cantor (1845-1918). According to Kac and Ulam, “[If] one
had to name a single person whose work has had the most decisive in-
fluence on the present spirit of mathematics, it would almost surely be

Georg Cantor.”
PNote that f(k) is a subset of N.
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The Proof (concluded)

If n € f(n) = B, then n € B, but then n ¢ B by B’s
definition.

If n¢ f(n) =B, then n & B, but then n € B by B’s
definition.

Hence B # f(n) for any n.

f is not a bijection, a contradiction.
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Georg Cantor (1845-1918)
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Cantor’s Diagonalization Argument lllustrated

4
®
o
(]

6
o
O
o
o
(J
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A Corollary of Cantor’'s Theorem

Corollary 7 For any set T', finite or infinite,

T <|2"].

The inequality holds in the finite T case as k < 2*.
Assume T is infinite now.

To prove | T'| < |21, simply consider f(z) = {z} € 27.

— f maps a member of T'={a,b,c,...} to a
corresponding member of { {a},{b},{c},...} C 2T,

To prove the strict inequality |T'| < |21, we use the

same argument as Cantor’s theorem.
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