Decidability and Recursive Languages

- Let $L \subseteq (\Sigma - \{_|\})^*$ be a **language**, i.e., a set of strings of symbols with a *finite* length.
 - For example, $\{0, 01, 10, 210, 1010, \ldots\}$.

- Let M be a TM such that for any string x:
 - If $x \in L$, then $M(x) = \text{“yes.”}$
 - If $x \notin L$, then $M(x) = \text{“no.”}$

- We say M **decides** L.

- If L is decided by some TM, then L is **recursive**.
Recursive Languages: Examples

- The set of palindromes over any alphabet is recursive.
- The set of prime numbers \(\{2, 3, 5, 7, 11, 13, 17, \ldots\} \) is recursive.
- The set of C programs that do not contain a `while`, a `for`, or a `goto` is recursive.
- The set of C programs that do not contain an infinite loop is not recursive (to be proved later).
Acceptability and Recursively Enumerable Languages

• Let $L \subseteq (\Sigma - \{\bot\})^*$ be a language.

• Let M be a TM such that for any string x:
 – If $x \in L$, then $M(x) = \text{"yes."}$
 – If $x \notin L$, then $M(x) = \uparrow$.

• We say M accepts L.
Acceptability and Recursively Enumerable Languages (concluded)

- If L is accepted by some TM, then L is called a recursively enumerable language.\(^a\)
 - A recursively enumerable language can be generated by a TM, thus the name.
 - That is, there is an algorithm such that for every $x \in L$, it will be printed out eventually.
 - This algorithm may never terminate.

\(^a\)Post (1944).
Emil Post (1897–1954)
Recursive and Recursively Enumerable Languages

Proposition 1 If \(L \) is recursive, then it is recursively enumerable.

- Let TM \(M \) decide \(L \).
- We need to design a TM that accepts \(L \).
- We next modify \(M \)’s program to obtain \(M' \) that accepts \(L \).
- \(M' \) is identical to \(M \) except that when \(M \) is about to halt with a “no” state, \(M' \) goes into an infinite loop.
- \(M' \) accepts \(L \).
Recursively Enumerable Languages: Examples

- The set of C program-input pairs that do run into an infinite loop is recursively enumerable.
 - Just run it in a simulator environment.

- The set of C programs that contain an infinite loop is *not* recursively enumerable (to be proved later).

- The set of valid statements of an axiomatic system is recursively enumerable.
 - Try all possible proofs systematically.
Turing-Computable Functions

• Let \(f : (\Sigma - \{\Box\})^* \rightarrow \Sigma^* \).

 – Optimization problems, root finding problems, etc.

• Let \(M \) be a TM with alphabet \(\Sigma \).

• \(M \) computes \(f \) if for any string \(x \in (\Sigma - \{\Box\})^* \),
 \(M(x) = f(x) \).

• We call \(f \) a recursive function\(^a\) if such an \(M \) exists.

\(^a\)Kurt Gödel (1931).
Kurt Gödel (1906–1978)
Church’s Thesis or the Church-Turing Thesis

• What is computable is Turing-computable; TMs are algorithms.\(^a\)

• Many other computation models have been proposed.
 – Recursive function (Gödel), λ calculus (Church),
 formal language (Post), assembly language-like RAM
 (Shepherdson & Sturgis), boolean circuits (Shannon),
 extensions of the Turing machine (more strings,
 two-dimensional strings, and so on), etc.

• All have been proved to be equivalent.

\(^{a}\)Kleene (1953).
Church’s Thesis or the Church-Turing Thesis (concluded)

- No “intuitively computable” problems have been shown not to be Turing-computable yet.

- The thesis is\(^a\)

 a profound claim about the physical laws of our universe, i.e.: any physical system that purports to be a computer is not capable of any computational task that a Turing machine is incapable of.

\(^a\)Smith (1998).
Alonso Church (1903–1995)
Stephen Kleene (1909–1994)
Extended Church’s Thesisa

- All “reasonably succinct encodings” of problems are \textit{polynomially related}.
 - Representations of a graph as an adjacency matrix and as a linked list are both succinct.
 - The \textit{unary} representation of numbers is not succinct.
 - The \textit{binary} representation of numbers is succinct.
 \[\ast \text{1001 vs. 11111111.} \]

- All numbers for TMs will be binary from now on.

aSome call it “polynomial Church’s thesis,” which Lószló Lovász attributed to Leonid Levin.
Turing Machines with Multiple Strings

• A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.

• K, Σ, s are as before.

• $\delta : K \times \Sigma^k \rightarrow (K \cup \{h, \text{“yes”}, \text{“no”}\}) \times (\Sigma \times \{←, →, −\})^k$.

• All strings start with a \triangleright.

• The first string contains the input.

• Decidability and acceptability are the same as before.

• When TMs compute functions, the output is on the last (kth) string.
A 2-String TM

\[\delta \]

\[\Rightarrow 1001110000111001110001110 \]

\[\Rightarrow 111110000 \]

\[\Rightarrow 111110000 \]
PALINDROME Revisited

- A 2-string TM can decide PALINDROME in $O(n)$ steps.
 - It copies the input to the second string.
 - The cursor of the first string is positioned at the first symbol of the input.
 - The cursor of the second string is positioned at the last symbol of the input.
 - The two cursors are then moved in opposite directions until the ends are reached.
 - The machine accepts if and only if the symbols under the two cursors are identical at all steps.
Configurations and Yielding

- The concept of configuration and yielding is the same as before except that a configuration is a \((2k + 1)\)-tuple

 \((q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)\).

- \(w_iu_i\) is the \(i\)th string.
- The \(i\)th cursor is reading the last symbol of \(w_i\).
- Recall that \(\triangleright\) is each \(w_i\)'s first symbol.

- The \(k\)-string TM’s initial configuration is

 \((s, \triangleright, x, \triangleright, \epsilon, \triangleright, \epsilon, \ldots, \triangleright, \epsilon)\).
Time Complexity

• The multistring TM is the basis of our notion of the time expended by TM computations.

• If a k-string TM M halts after t steps on input x, then the **time required by M on input** x is t.

• If $M(x) = \uparrow$, then the time required by M on x is ∞.

• Machine M operates **within time** $f(n)$ for $f : \mathbb{N} \to \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.

 - $|x|$ is the length of string x.

• Function $f(n)$ is a **time bound** for M.
Time Complexity Classes\(^\text{a}\)

- Suppose language \(L \subseteq (\Sigma - \{\square\})^*\) is decided by a multistring TM operating in time \(f(n)\).
- We say \(L \in \text{TIME}(f(n))\).
- \(\text{TIME}(f(n))\) is the set of languages decided by TMs with multiple strings operating within time bound \(f(n)\).
- \(\text{TIME}(f(n))\) is a complexity class.
 - \textsc{Palindrome} is in \(\text{TIME}(f(n))\), where \(f(n) = O(n)\).

\(^{a}\text{Hartmanis and Stearns (1965); Hartmanis, Lewis, and Stearns (1965).}\)
Juris Hartmanisa (1928–)

aTuring Award (1993).
Richard Edwin Stearnsa (1936–)

aTuring Award (1993).
The Simulation Technique

Theorem 2 Given any k-string M operating within time $f(n)$, there exists a (single-string) M' operating within time $O(f(n)^2)$ such that $M(x) = M'(x)$ for any input x.

- The single string of M' implements the k strings of M.
- Represent configuration $(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)$ of M by configuration

 $$(q, \triangleright w'_1 u_1 \triangleleft w'_2 u_2 \triangleleft \cdots \triangleleft w'_k u_k \triangleleft \triangleleft)$$

 of M'.

 - \triangleleft is a special delimiter.

 - w'_i is w_i with the firsta and last symbols “primed.”

 aThe first symbol is always \triangleright.
The Proof (continued)

- The “priming” of the last symbol of w_i ensures that M' knows which symbol is under the cursor for each simulated string.\(^a\)

- We use the primed version of the first symbol of w_i (so \triangleright becomes \triangleright').

- Recall the requirement on p. 20 that $\delta(q, \triangleright) = (p, \triangleright, \rightarrow)$ so that the cursor is not allowed to move to the left of \triangleright.

- So the single cursor of M' can move between the simulated strings of M.\(^b\)

\(^a\)Added because of comments made by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

\(^b\)Thanks to a lively discussion on September 22, 2009.
The Proof (continued)

- The initial configuration of M' is
 \[(s, \triangleright \triangleright' x \triangleleft \triangleright' \triangleleft \cdots \triangleright' \triangleleft \triangleleft \cdots)\].

- We simulate each move of M thus:
 1. M' scans the string to pick up the k symbols under the cursors.
 - The states of M' must be enlarged to include $K \times \Sigma^k$ to remember them.
 - The transition functions of M' must also reflect it.
 2. M' then changes the string to reflect the overwriting of symbols and cursor movements of M.
The Proof (continued)

• It is possible that some strings of M need to be lengthened (see next page).

 – The linear-time algorithm on p. 34 can be used for each such string.

• The simulation continues until M halts.

• M' then erases all strings of M except the last one.

• Since M halts within time $f(|x|)$, none of its strings ever becomes longer than $f(|x|)$.

• The length of the string of M' at any time is $O(kf(|x|))$.

\[\text{a} \] We tacitly assume $f(n) \geq n$.

The Proof (concluded)

• Simulating each step of M takes, *per string of* M, $O(kf(|x|))$ steps.

 – $O(f(|x|))$ steps to collect information.

 – $O(kf(|x|))$ steps to write and, if needed, to lengthen the string.

• M' takes $O(k^2 f(|x|))$ steps to simulate each step of M because there are k strings.

• As there are $f(|x|)$ steps of M to simulate, M' operates within time $O(k^2 f(|x|)^2)$.
Linear Speedupa

Theorem 3 Let $L \in \text{TIME}(f(n))$. Then for any $\epsilon > 0$, $L \in \text{TIME}(f'(n))$, where $f'(n) = \epsilon f(n) + n + 2$.

aHartmanis and Stearns (1965).
Implications of the Speedup Theorem

• State size can be traded for speed.
 – $m^k \cdot |\Sigma|^{3m^k}$-fold increase to gain a speedup of $O(m)$.

• If $f(n) = cn$ with $c > 1$, then c can be made arbitrarily close to 1.

• If $f(n)$ is superlinear, say $f(n) = 14n^2 + 31n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
 – *Arbitrary* linear speedup can be achieved.a
 – This justifies the big-O notation for the analysis of algorithms.

dCan you apply the theorem multiple times to achieve superlinear speedup? Thanks to a question by a student on September 21, 2010.
P

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^k for some $k \geq 1$.

- If L is a polynomially decidable language, it is in $\text{TIME}(n^k)$ for some $k \in \mathbb{N}$.
 - Clearly, $\text{TIME}(n^k) \subseteq \text{TIME}(n^{k+1})$.

- The union of all polynomially decidable languages is denoted by P:
 \[P = \bigcup_{k>0} \text{TIME}(n^k). \]

- P contains problems that can be efficiently solved.
Space Complexity

• Consider a k-string TM M with input x.

• Assume non-\square is never written over by \square.a

 – The purpose is not to artificially downplay the space requirement.

• If M halts in configuration
 $(H, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)$, then the space required
 by M on input x is $\sum_{i=1}^{k} |w_i u_i|$.

aCorrected by Ms. Chuan-Ju Wang (R95922018) on September 27, 2006.
Space Complexity (continued)

• Suppose we do not charge the space used only for input and output.

• Let $k > 2$ be an integer.

• A k-string Turing machine with input and output is a k-string TM that satisfies the following conditions.
 – The input string is *read-only*.
 – The last string, the output string, is *write-only*.
 – So the cursor never moves to the left.
 – The cursor of the input string does not wander off into the $\|$s.
Space Complexity (concluded)

• If M is a TM with input and output, then the space required by M on input x is $\sum_{i=2}^{k-1} |w_i u_i|$.

• Machine M operates within space bound $f(n)$ for $f : \mathbb{N} \rightarrow \mathbb{N}$ if for any input x, the space required by M on x is at most $f(|x|)$.
Space Complexity Classes

• Let L be a language.

• Then

$$L \in \text{SPACE}(f(n))$$

if there is a TM with input and output that decides L and operates within space bound $f(n)$.

• SPACE($f(n)$) is a set of languages.

 − PALINDROME \in SPACE($\log n$): Keep 3 counters.

• As in the linear speedup theorem (Theorem 3), constant coefficients do not matter.
Nondeterminisma

- A nondeterministic Turing machine (NTM) is a quadruple $N = (K, \Sigma, \Delta, s)$.

- K, Σ, s are as before.

- $\Delta \subseteq K \times \Sigma \times (K \cup \{h, "yes", "no"\}) \times \Sigma \times \{←, →, −\}$ is a relation, not a function.b

 - For each state-symbol combination, there may be multiple valid next steps—or none at all.

 - Multiple instructions may be applicable.

aRabin and Scott (1959).

bCorrected by Mr. Jung-Ying Chen (D95723006) on September 23, 2008.
Nondeterminism (concluded)

• As before, a program contains lines of codes:

\[(q_1, \sigma_1, p_1, \rho_1, D_1) \in \Delta,\]
\[(q_2, \sigma_2, p_2, \rho_2, D_2) \in \Delta,\]
\[\vdots\]
\[(q_n, \sigma_n, p_n, \rho_n, D_n) \in \Delta.\]

– In the deterministic case (p. 21), we wrote

\[\delta(q_i, \sigma_i) = (p_i, \rho_i, D_i).\]

• A configuration yields another configuration in one step if there exists a rule in \(\Delta\) that makes this happen.
Michael O. Rabina (1931–)

aTuring Award (1976).
Dana Stewart Scotta (1932–)

aTuring Award (1976).
Computation Tree and Computation Path

\[s \]

\[h \]

\[\text{“no”} \]

\[h \]

\[\text{“yes”} \]

\[\text{“yes”} \]
Decidability under Nondeterminism

- Let \(L \) be a language and \(N \) be an NTM.

- \(N \) decides \(L \) if for any \(x \in \Sigma^* \), \(x \in L \) if and only if there is a sequence of valid configurations that ends in “yes.”
 - It is not required that the NTM halts in all computation paths.\(^a\)
 - If \(x \not\in L \), no nondeterministic choices should lead to a “yes” state.

- What is key is the algorithm’s overall behavior not whether it gives a correct answer for each particular run.

- Determinism is a special case of nondeterminism.

\(^a\)So “accepts” may be a more proper term.
An Example

• Let L be the set of logical conclusions of a set of axioms.
 – Predicates not in L may be false under the axioms.
 – They may also be independent of the axioms.
 * That is, they can be assumed true or false without contradicting the axioms.
An Example (concluded)

• Let ϕ be a predicate whose validity we would like to prove.

• Consider the nondeterministic algorithm:
 1: $b := \text{true}$;
 2: while the input predicate $\phi \neq b$ do
 3: Generate a logical conclusion of b by applying one of the axioms; \{Nondeterministic choice.\}
 4: Assign this conclusion to b;
 5: end while
 6: “yes”;

• This algorithm decides L.