Unapproximability of Tsp?

Theorem 80 The approximation threshold of TSP s 1
unless P = NP.

e Suppose there is a polynomial-time e-approximation
algorithm for TSP for some € < 1.

e We shall construct a polynomial-time algorithm for the
NP-complete HAMILTONIAN CYCLE.

e Given any graph G = (V, E), construct a TSP with | V|
cities with distances

if{i,j} € £

otherwise

2Sahni and Gonzales (1976).

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 661



The Proof (concluded)

e Run the alleged approximation algorithm on this TSP.

e Suppose a tour of cost |V] is returned.

— This tour must be a Hamiltonian cycle.

Vi

e Suppose a tour with at least one edge of length {—_ is

returned.

V]
1—e€-

— The total length of this tour is >

— Because the algorithm is e-approximate, the optimum
is at least 1 — € times the returned tour’s length.

— The optimum tour has a cost exceeding | V'|.

— Hence G has no Hamiltonian cycles.
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KNAPSACK Has an Approximation Threshold of Zero?

Theorem 81 For any €, there is a polynomial-time

e-approximation algorithm for KNAPSACK.

e We have n weights wy, ws, ..., w, € Z*, a weight limit
W, and n values vy, vs,...,v, € Z1.P

e We must find an S C {1,2,...,n} such that
ZiES w; < W and Zie 5 U; 1s the largest possible.

2Ibarra and Kim (1975).
PIf the values are fractional, the result is slightly messier but the

main conclusion remains correct. Contributed by Mr. Jr-Ben Tian
(R92922045) on December 29, 2004.
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The Proof (continued)

V = max{vy,va,..., 0}
Clearly, ) .cqvi <nV.
Let 0<71<nand 0 <ov<nV.

W (i,v) is the minimum weight attainable by selecting

some of the first 7 items with a total value of v.

Set W (0,v) =00 forve {1,2,...,nV } and W(i,0) =0

fori=0,1,...,n.2

2Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu
(D98922013) on December 28, 2009.
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The Proof (continued)

Then, for 0 <17 < n,
Wi+ 1,v) =min{W(i,v), W(i,v — v11) + wis1}

Finally, pick the largest v such that W (n,v) < W.

The running time is O(n?V’), not polynomial time.

Key idea: Limit the number of precision bits.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 665



The Proof (continued)

e Define

1 ob | Vi
— This is equivalent to zeroing each v;’s last b bits.

e From the original instance
r=(wy,..., Wy, W,v1,...

define the approximate instance
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The Proof (continued)

e Solving z’ takes time O(n2V/2b).
— The algorithm only performs subtractions on the

v;-related values.

— So the b last bits can be removed from the

calculations.

Ui

2,,J in the calculations.

— That is, use v] = |

— Then multiply the returned value by 2°.

e The solution S’ is close to the optimum solution S:

Zviz ZU;;ZZU:;ZZ(U@'—T)) EZvi—anb.

1eS’ 1eS’ €S €S 1€S
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The Proof (continued)

ZUZ' Z ZUZ'—HQb.

i€ S’ i€S
Without loss of generality, assume w; < W for all 2.

— QOtherwise item 7 is redundant.

V' is a lower bound on OPT.
— Picking any single item with value <V is a

legitimate choice.

The relative error from the optimum is < n2°%/V:

— Ziesf Uy <
Zies Vs

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 668



The Proof (concluded)

e Suppose we pick b = |log, %J

e The algorithm becomes e-approximate (see Eq. (10) on
p. 639).

e The running time is then O(n?V/2%) = O(n3/e), a

polynomial in n and 1/e.?

2]t hence depends on the value of 1/e. Thanks to a lively class dis-
cussion on December 20, 2006. If we fix ¢ and let the problem size
increase, then the complexity is cubic. Contributed by Mr. Ren-Shan
Luoh (D97922014) on December 23, 2008.
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Pseudo-Polynomial-Time Algorithms

e Consider problems with inputs that consist of a

collection of integer parameters (TSP, KNAPSACK, etc.).

e An algorithm for such a problem whose running time is
a polynomial of the input length and the value (not
length) of the largest integer parameter is a
pseudo-polynomial-time algorithm.?

e On p. 665, we presented a pseudo-polynomial-time
algorithm for KNAPSACK that runs in time O(n?V).

e How about TSP (D), another NP-complete problem?

2Garey and Johnson (1978).
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No Pseudo-Polynomial-Time Algorithms for TSP (D)

e By definition, a pseudo-polynomial-time algorithm
becomes polynomial-time if each integer parameter is
limited to having a value polynomial in the input length.

Corollary 43 (p. 344) showed that HAMILTONIAN PATH is
reducible to TSP (D) with weights 1 and 2.

As HAMILTONIAN PATH is NP-complete, TSP (D) cannot
have pseudo-polynomial-time algorithms unless P = NP.

TSP (D) is said to be strongly NP-hard.

Many weighted versions of NP-complete problems are
strongly NP-hard.
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Polynomial-Time Approximation Scheme

e Algorithm M is a polynomial-time approximation
scheme (PTAS) for a problem if:

— For each ¢ > 0 and instance x of the problem, M
runs in time polynomial (depending on ¢€) in |z |.
« Think of € as a constant.

— M is an e-approximation algorithm for every ¢ > 0.
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Fully Polynomial-Time Approximation Scheme

e A polynomial-time approximation scheme is fully
polynomial (FPTAS) if the running time depends

polynomially on |z | and 1/e.
— Maybe the best result for a “hard” problem.

— For instance, KNAPSACK is fully polynomial with a
running time of O(n3/¢) (p. 663).
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Square of G
e Let G = (V,FE) be an undirected graph.

e G? has nodes {(v1,v3) : v1,v2 € V} and edges

H(u,u), (v,0)}: (u=vA{u, v} e E)V{uv} e E}

(1,2) (1,2 (1,3

1 C“}é%g@
X

()3 J () )
3,1 (3,2 (3,3

GZ
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Independent Sets of G and G?

Lemma 82 G(V, E) has an independent set of size k if and
only if G* has an independent set of size k.

e Suppose G has an independent set I C V of size k.

e {(u,v):u,v €I} is an independent set of size k* of G*.

(1,2) (1,2 (1,3)
K\%{

(32
GZ
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The Proof (continued)

e Suppose G2 has an independent set I? of size k2.

o U={u:3veV (uwv) € I?}is an independent set of G.

\

e | U | is the number of “rows” that the nodes in I? occupy.
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The Proof (concluded)?®
If |U| >k, then we are done.
Now assume |U | < k.

As the k? nodes in I? cover fewer than k “rows,” there

must be a “row” in possession of > k nodes of I2.

Those > k£ nodes will be independent in G as each “row”
is a copy of G.

@Thanks to a lively class discussion on December 29, 2004.
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Approximability of INDEPENDENT SET

e The approximation threshold of the maximum

independent set is either zero or one (it is one!).

Theorem 83 If there is a polynomial-time e-approrimation
algorithm for INDEPENDENT SET for any 0 < € < 1, then

there is a polynomial-time approrimation scheme.

e Let GG be a graph with a maximum independent set of

size k.

e Suppose there is an O(n')-time e-approximation
algorithm for INDEPENDENT SET.

e We seek a polynomial-time €’-approximation algorithm
with € < e.
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The Proof (continued)

By Lemma 82 (p. 675), the maximum independent set of
(G? has size k2.

Apply the algorithm to G?.
The running time is O(n?").
The resulting independent set has size > (1 — €) k2.

By the construction in Lemma 82 (p. 675), we can
obtain an independent set of size > /(1 —¢) k2 for G.

Hence there is a (1 — /1 — €)-approximation algorithm
for INDEPENDENT SET by Eq. (11) on p. 640.
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The Proof (concluded)

In general, we can apply the algorithm to G2' to obtain

an (1 — (1 — e)Q_E)—approximation algorithm for

INDEPENDENT SET.

The running time is n? *.2

log(1—e) -I ‘

Now ple é = ﬂog m

. log(1l—e¢)
. . V———————<
The running time becomes n les(d—<")

It is an €’-approximation algorithm for INDEPENDENT
SET.

21t is not fully polynomial.
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Comments

INDEPENDENT SET and NODE COVER are reducible to
each other (Corollary 40, p. 309).

NODE COVER has an approximation threshold at most
0.5 (p. 645).

But INDEPENDENT SET is unapproximable (see the
textbook).

INDEPENDENT SET limited to graphs with degree < k is
called k-DEGREE INDEPENDENT SET.

k-DEGREE INDEPENDENT SET is approximable (see the
textbook).
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On P vs. NP
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Density?®

The density of language L C X* is defined as
densp(n) =|{x € L:|x| < n}|.
o If L ={0,1}*, then densy(n) =271 — 1.
e So the density function grows at most exponentially.
e For a unary language L C {0},

densy(n) < n+ 1.

—
— Because L C {¢,0,00,...,00---0,...}.

2Berman and Hartmanis (1977).
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Sparsity

e Sparse languages are languages with polynomially

bounded density functions.

e Dense languages are languages with superpolynomial

density functions.
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Self-Reducibility for SAT

An algorithm exhibits self-reducibility if it finds a
certificate by exploiting algorithms for the decision

version of the same problem.

Let ¢ be a boolean expression in n variables

L1y, Ly ey L.

t € {0,1}/ is a partial truth assignment for

L1, X2y...,Lj.

¢[t] denotes the expression after substituting the truth

values of ¢ for x1,x2,...,2¢| In .
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An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty ¢.
. if |[t| = n then
return ¢[t|;

return ¢[t0]V ¢[tl];

1
2
3: else
4
5. end if

The above algorithm runs in exponential time, by visiting all

the partial assignments (or nodes on a depth-n binary tree).
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NP-Completeness and Density®

Theorem 84 If a unary language U C {0}* is
NP-complete, then P = NP.

e Suppose there is a reduction R from SAT to U.

We use R to find a truth assignment that satisfies
boolean expression ¢ with n variables if it is satisfiable.

Specifically, we use R to prune the exponential-time

exhaustive search on p. 686.

The trick is to keep the already discovered results ¢[1 ]
in a table H.

2Berman (1978).
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if |t| = n then
return o[t |;
else
if (R(¢[t]),v) is in table H then
return v;
else
if ¢[t0] = “satisfiable” or ¢[t1] = “satisfiable” then
Insert (R(¢[t]), “satisfiable”) into H;

return “satisfiable”;

1:
2:
3:
4:
5:
6:
7
8:
9:

else
Insert (R(¢[t]), “unsatisfiable”) into H;
return “unsatisfiable”;
end if
end if
: end if

—_
A sl
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The Proof (continued)

Since R is a reduction, R(¢[t]) = R(¢[t']) implies that
¢[t] and ¢[t' | must be both satisfiable or unsatisfiable.

R(¢[t]) has polynomial length < p(n) because R runs in
log space.

As R maps to unary numbers, there are only

polynomially many p(n) values of R(¢[t]).

How many nodes of the complete binary tree (of
invocations/truth assignments) need to be visited?

If that number is a polynomial, the overall algorithm

runs in polynomial time and we are done.
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The Proof (continued)

e A search of the table takes time O(p(n)) in the random

access memory model.

e The running time is O(Mp(n)), where M is the total

number of invocations of the algorithm.

e The invocations of the algorithm form a binary tree of
depth at most n.
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The Proof (continued)

e There is a set T' = {t1,to,...} of invocations (partial
truth assignments, i.e.) such that:

1. |T| > (M —1)/(2n).
2. All invocations in T are recursive (nonleaves).

3. None of the elements of 1" is a prefix of another.
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3rd step: Delete all 1's

at most »n ancestors

(prefixes) from

further consideration 2nd step: Select any

bottom undeleted
invocation ¢ and add
itto 7

\ I st step: Delete
leaves; (M —1)/2

nonleaves remaining
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An Example
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The Proof (continued)

e All invocations t € T have different R(¢[t]) values.

— None of h,j € T is a prefix of the other.

— The invocation of one started after the invocation of
the other had terminated.

— If they had the same value, the one that was invoked
second would have looked it up, and therefore would

not be recursive, a contradiction.

e The existence of T' implies that there are at least
(M —1)/(2n) different R(¢[t]) values in the table.
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The Proof (concluded)

We already know that there are at most p(n) such

values.

Hence (M —1)/(2n) < p(n).

Thus M < 2np(n) + 1.

The running time is therefore O(Mp(n)) = O(np?(n)).

We comment that this theorem holds for any sparse

language, not just unary ones.?

@Mahaney (1980).
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coNP-Completeness and Density

Theorem 85 (Fortung (1979)) If a unary language
U C {0}* is coNP-complete, then P = NP.

e Suppose there is a reduction R from SAT COMPLEMENT
to U.

e The rest of the proof is basically identical except that,

now, we want to make sure a formula is unsatisfiable.
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Exponential Circuit Complexity

Almost all boolean functions require
on
2n
gates to compute (generalized Theorem 14 on p. 164).

e Progress of using circuit complexity to prove exponential

lower bounds for NP-complete problems has been slow.

— As of January 2006, the best lower bound is

5n —o(n).?

2]wama and Morizumi (2002).
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Exponential Circuit Complexity for NP-Complete Problems

e We shall prove exponential lower bounds for

NP-complete problems using monotone circuits.

— Monotone circuits are circuits without — gates.

e Note that this does not settle the P vs. NP problem or
any of the conjectures on p. 545.
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The Power of Monotone Circuits

Monotone circuits can only compute monotone boolean

functions.

They are powerful enough to solve a P-complete
problem, MONOTONE CIRCUIT VALUE (p. 257).

There are NP-complete problems that are not monotone;

they cannot be computed by monotone circuits at all.

There are NP-complete problems that are monotone;

they can be computed by monotone circuits.

— HAMILTONIAN PATH and CLIQUE.
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CLIQUE,,

CLIQUE,, j is the boolean function deciding whether a
graph G = (V, F) with n nodes has a clique of size k.

The input gates are the (g) entries of the adjacency

matrix of (.

— Gate g;; is set to true if the associated undirected
edge {1,j } exists.

CLIQUE,, j is a monotone function.
Thus it can be computed by a monotone circuit.

This does not rule out that nonmonotone circuits for
CLIQUE,, , may use fewer gates.
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Crude Circuits

e One possible circuit for CLIQUE,, ;, does the following.

1. For each S C V with |S| = k, there is a subcircuit
with O(k?) A-gates testing whether S forms a clique.

2. We then take an OR of the outcomes of all the (Z)
subsets S7,.5,..., S(Z)

e This is a monotone circuit with O(k?(}})) gates, which is

exponentially large unless k or n — k is a constant.

e A crude circuit CC(Xq, Xo,..., X,,) tests if any of
X; CV forms a clique.

— The above-mentioned circuit is CC(Sy, So, .. ., S(
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Sunflowers

e FixpeZt and ¥ € Z™.

e A sunflower is a family of p sets { Py, P, ..., P,}, called

petals, each of cardinality at most £.

e All pairs of sets in the family must have the same
intersection (called the core of the sunflower).
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A Sample Sunflower

{{1,2,3,5},{1,2,6,9},{0,1,2,11},
{1,2,12,13},{1,2,8,10},{1,2,4,7}}
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The Erdos-Rado Lemma

Lemma 86 Let Z be a family of more than M = (p — 1)%/!
nonempty sets, each of cardinality ¢ or less. Then Z must

contain a sunflower (of size p).

e Induction on /.

e For ¢ =1, p different singletons form a sunflower (with

an empty core).
e Suppose £ > 1.

e Consider a maximal subset D C Z of disjoint sets.

— Every set in Z2 — D intersects some set in D.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 704



The Proof of the Erdés-Rado Lemma (continued)

e Suppose D contains at least p sets.

— D constitutes a sunflower with an empty core.

e Suppose D contains fewer than p sets.
Let C' be the union of all sets in D.
|C'| < (p—1)¢ and C intersects every set in Z.

There is a d € C that intersects more than
ﬁ = (p—1)*"1(£ —1)! sets in Z.

Consider Z/' ={Z —{d}: Z € Z,d € Z}.

Z’ has more than M’ = (p — 1)*71(¢ — 1)! sets.
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The Proof of the Erdés-Rado Lemma (concluded)

e (continued)
— M’ is just M with ¢ replaced with ¢ — 1.

— Z’ contains a sunflower by induction, say
{P1, Ps,...,Py}.

— Now,

(P, U{d}, P, U{d},..., P, U{d}}

is a sunflower in Z.
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Comments on the Erdés-Rado Lemma
A family of more than M sets must contain a sunflower.

Plucking a sunflower entails replacing the sets in the

sunflower by its core.

By repeatedly finding a sunflower and plucking it, we can
reduce a family with more than M sets to a family with

at most M sets.

If Z is a family of sets, the above result is denoted by
pluck(Z2).

Note: pluck(Z) is not unique.
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An Example of Plucking

e Recall the sunflower on p. 703:

Z = {{1,2,3,5},{1,2,6,9},{0,1,2, 11},
{1,2,12,13},{1,2,8,10},{1,2,4,7}}

pluck(Z) = {{1,2}}.
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Razborov's Theorem

Theorem 87 (Razborov (1985)) There is a constant ¢

such that for large enough n, all monotone circuits for
CLIQUE,, j, with k = n'/% have size at least n"

1/8
e We shall approximate any monotone circuit for
CLIQUE,, ;, by a restricted kind of crude circuit.

e The approximation will proceed in steps: one step for

each gate of the monotone circuit.

e Each step introduces few errors (false positives and false

negatives).

e But the resulting crude circuit has exponentially many

EITOors.
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Alexander Razborov (1963-)
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