Zero-Knowledge Proof of 3 Colorability®
1: fori=1,2,...,|E|? do
Peggy chooses a random permutation 7 of the 3-coloring ¢;

Peggy samples encryption schemes randomly, commits® them,
and sends 7(¢(1)), w(4(2)),...,7(d(|V])) encrypted to Victor;

Victor chooses at random an edge e € E and sends it to Peggy

for the coloring of the endpoints of e;
if e = (u,v) € FE then

Peggy reveals the coloring of v and v and “proves” that they
correspond to their encryptions;

else
Peggy stops;

end if

2Goldreich, Micali, and Wigderson (1986).
PContributed by Mr. Ren-Shuo Liu (D98922016) on December 22,

2009.
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if the “proof” provided in Line 6 is not valid then

Victor rejects and stops;
end if

if 7(¢(u)) = (@(v)) or w($(w)), m($(v)) & {1,2,3} then

Victor rejects and stops;
end if
: end for

: Victor accepts;
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Analysis

If the graph is 3-colorable and both Peggy and Victor

follow the protocol, then Victor always accepts.

If the graph is not 3-colorable and Victor follows the

protocol, then however Peggy plays, Victor will accept
with probability < (1—m™1)™ < e ™, where m = | E|.

Thus the protocol is valid.

This protocol yields no knowledge to Victor as all he

gets is a bunch of random pairs.

The proof that the protocol is zero-knowledge to any

verifier is intricate.
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Comments

e Each 7(¢(i)) is encrypted by a different cryptosystem.®

— Otherwise, all the colors will be revealed in Step 6.

e Each edge e must be picked randomly.P

— Otherwise, Peggy will know Victor’s game plan and
plot accordingly.

2Contributed by Ms. Yui-Huei Chang (R96922060) on May 22, 2008
PContributed by Mr. Chang-Rong Hung (R96922028) on May 22, 2008
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Approximability
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Tackling Intractable Problems

Many important problems are NP-complete or worse.
Heuristics have been developed to attack them.
They are approximation algorithms.

How good are the approximations?
— We are looking for theoretically guaranteed bounds,

not “empirical” bounds.

Are there NP problems that cannot be approximated
well (assuming NP # P)?

Are there NP problems that cannot be approximated at
all (assuming NP # P)?
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Some Definitions

Given an optimization problem, each problem
instance = has a set of feasible solutions F'(x).
Each feasible solution s € F'(x) has a cost ¢(s) € Z™.

— Here, cost refers to the quality of the feasible
solution, not the time required to obtain it.

— It is our objective function, e.g., total distance,

satisfaction, or cut size.

The optimum cost is OPT(x) = minge p(,) c(s) for a

minimization problem.

It is OPT(x) = maXse p(s) ¢(s) for a maximization

problem.
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Approximation Algorithms
e Let algorithm M on x returns a feasible solution.

e M is an e-approximation algorithm, where ¢ > 0, if

for all z,

c(M(z)) —opr(z)] _
max(OPT(x),c(M(x))) —
— For a minimization problem,

o(M(x)) — minye pa) ()
(M (x)) =€

— For a maximization problem,

MaXsep(z) €(5) — c(M(z))

MaXsc () C(S)

<e€
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Lower and Upper Bounds

e For a minimization problem,

minsEF(as) C(S)

sén;g:) c(s) <c(M(x)) < T

minseF(x) C(S) .
MGy = 1€

— So approximation ratio

e For a maximization problem,

(1 —¢€) x SrenF@é) c(s) <c(M(x)) < s]énﬁ};) c(s). (11)

((M@) 5 q .

maXgc F(x) c(s) =

— So approximation ratio

e They are alternative definitions of e-approximation.
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Range Bounds
e takes values between 0 and 1.

For maximization problems, an e-approximation

algorithm returns solutions within | (1 — €¢) X OPT, OPT|.

For minimization problems, an e-approximation
OPT

algorithm returns solutions within [OPT, T |.

For each NP-complete optimization problem, we shall be
interested in determining the smallest ¢ for which there

is a polynomial-time e-approximation algorithm.

Sometimes € has no minimum value.
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Approximation Thresholds

The approximation threshold is the greatest lower
bound of all € > 0 such that there is a polynomial-time

c-approximation algorithm.

The approximation threshold of an optimization problem
can be anywhere between 0 (approximation to any
desired degree) and 1 (no approximation is possible).

If P = NP, then all optimization problems in NP have

an approximation threshold of 0.

So we assume P # NP for the rest of the discussion.
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NODE COVER

NODE COVER seeks the smallest C' C V' in graph
G = (V, E) such that for each edge in F, at least one of

its endpoints is in C.

A heuristic to obtain a good node cover is to iteratively
move a node with the highest degree to the cover.

This turns out to produce

c(M(z))
OPT(x)

= O(logn).

'n).

Hence the approximation ratio is ©(log™

It is not an e-approximation algorithm for any e < 1.
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A 0.5-Approximation Algorithm?

. C =)
. while F # () do

Delete an arbitrary edge { u,v } from F;

Delete edges incident with v and v from FE;

Add u and v to C; {Add 2 nodes to C' each time.}
. end while

. return C;

2Johnson (1974).
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Analysis
C' contains |C|/2 edges.
No two edges of C share a node.?

Any node cover must contain at least one node from

each of these edges.
This means that opT(G) > |C|/2.

S0
oPT(G)

— = >1/2.
o =Y

e The approximation threshold is < 0.5.P

2In fact, C is a mazrimal matching.
0.5 is also the lower bound for any “greedy” algorithms (see Davis

and Impagliazzo (2004)).
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The 0.5 Bound Is Tight for the Algorithm?

2Contributed by Mr. Jeng-Chung Li (R92922087) on December 20,
2003.
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Maximum Satisfiability

e Given a set of clauses, MAXSAT seeks the truth

assignment that satisfies the most.
e MAX2SAT is already NP-complete (p. 287).

e Consider the more general k-MAXGSAT for constant k.

— Given a set of boolean expressions
O = {¢p1,P2,...,0m} in n variables.

— Each ¢; is a general expression involving k variables.

— k-MAXGSAT seeks the truth assignment that satisfies

the most expressions.
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A Probabilistic Interpretation of an Algorithm

e Fach ¢; involves exactly k variables and is satisfied by s;
of the 2% truth assignments.

e A random truth assignment € {0, 1}" satisfies ¢; with
probability p(¢;) = s;/2".

— p(¢;) is easy to calculate as k is a constant.

e Hence a random truth assignment satisfies an expected

number
™m

p(®) = p(e)

1=1

of expressions ¢;.
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The Search Procedure

Clearly

% {p(®|z1 = true]) + p(P|x; = false]) }.

Select the t; € {true, false} such that p(®|xy; =11 ]) is

the larger one.
Note that p(®[x1 =t1]) > p(P).

Repeat with expression ®|x; = t1 ] until all variables z;
have been given truth values t; and all ¢; either true or

false.
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The Search Procedure (concluded)

e By our hill-climbing procedure,

p(P)
p(®lz1 =11])
p(P|lz1 =t1, 22 =12])

p(Plz1 =t1,20 =12,..., 2,

e So at least p(®) expressions are satisfied by truth

assignment (t1,to,...,t,).

e The algorithm is deterministic.
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Approximation Analysis

The optimum is at most the number of satisfiable
¢;—i.e., those with p(¢;) > 0.

Hence the ratio of algorithm’s output vs. the optimum is

p(®) _ >.ip(#)

>
ZP(¢i)>O 1

The heuristic is a polynomial-time e-approximation

algorithm with € = 1 — miny,4,)>0 P(®s).

Because p(¢;) > 27, the heuristic is a polynomial-time

e-approximation algorithm with e =1 — 27,
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Back to MAXSAT
In MAXSAT, the ¢,’s are clauses.

Hence p(¢;) > 1/2, which happens when ¢; contains a

single literal.

And the heuristic becomes a polynomial-time

e-approximation algorithm with e = 1/2.2

If the clauses have k distinct literals, p(¢;) = 1 — 27,

And the heuristic becomes a polynomial-time
e-approximation algorithm with e = 27,

— This is the best possible for £ > 3 unless P = NP.

2Johnson (1974).
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MAX CUT Revisited

e The NP-complete MAX CUT seeks to partition the nodes
of graph G = (V, E) into (S, V — S) so that there are as
many edges as possible between S and V — S (p. 315).

e Local search starts from a feasible solution and

performs “local” improvements until none are possible.

e Next we present a local search algorithm for MAX CUT.
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A 0.5-Approximation Algorithm for MAX CUT
. S =0
: while dv € V' whose switching sides results in a larger
cut do
Switch the side of v;
. end while

. return S;

e A 0.12-approximation algorithm exists.?

e 0.059-approximation algorithms do not exist unless

NP = ZPP.

2Goemans and Williamson (1995).
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Analysis

~— Optimal cut
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Analysis (continued)

e Partition V =V; U V5 U V3 U V,, where
— Our algorithm returns (V3 U Va, V3 U Vy).
— The optimum cut is (V3 U V3, Vo U Vy).

e Let e;; be the number of edges between V; and V.

e For each node v € V7, its edges to V7 U V5 are
outnumbered by those to V3 U Vj.

— Otherwise, v would have been moved to V3 U Vj to

improve the cut.
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Analysis (continued)

e Considering all nodes in V; together, we have

2e11 +e12 < ej3+ey

— It is 2eq7 is because each edge in V; is counted twice.

e The above inequality implies

e12 < e13 + e14.
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Analysis (concluded)

e Similarly,

€23 + €24
< €23+ €13

< e14+ ey

e Add all four inequalities, divide both sides by 2, and add
the inequality e14 + ea3 < €14 + €23 + e13 + ea4 to obtain

e12 + €34 + €14 + €23 < 2(e13 + €14 + €23 + €24).

e The above says our solution is at least half the optimum.
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Approximability, Unapproximability, and Between

e KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have
approximation thresholds less than 1.

— KNAPSACK has a threshold of 0 (see p. 663).
— But NODE COVER and MAXSAT have a threshold
larger than 0.
e The situation is maximally pessimistic for TSp: It
cannot be approximated unless P = NP (see p. 661).

— The approximation threshold of TSP is 1.

+ The threshold is 1/3 if the TSP satisfies the
triangular inequality.

— The same holds for INDEPENDENT SET.
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