Theory of Computation

Mid-Term Examination on November 10, 2009

Problem 1 (25 points). Show that if NP \subseteq NSPACE (n^2) , then NP \neq PSPACE.

Proof. By Savitch's theorem, $NSPACE(n^2) \subseteq SPACE(n^4)$. By the spacehierarchy theorem, $SPACE(n^4) \subsetneq PSPACE$. Hence $NP \subseteq NSPACE(n^2)$ implies

$$NP \subseteq NSPACE(n^2) \subseteq SPACE(n^4) \subsetneq PSPACE.$$

Problem 2 (25 points). Let the MIX HAMILTONIAN PATH problem ask whether, given two undirected graphs, exactly one of them has a Hamiltonian path. Prove or disprove that MIX HAMILTONIAN PATH is NP-hard.

Proof. We present a logarithmic-space reduction from HAMILTONIAN PATH to MIX HAMILTONIAN PATH, thus establishing the NP-hardness of MIX HAMIL-TONIAN PATH. Let G_0 be a fixed undirected graph without a Hamiltonian path. Given an undirected graph G, the reduction outputs G and G_0 . Clearly, G has a Hamiltonian path if and only if exactly one of G and G_0 does. \Box

Problem 3 (25 points). It is known that EXP-hard languages exist. Can every NP-complete language be reduced to an EXP-hard language? Briefly justify your answer.

Proof. Clearly, $NP \subseteq EXP$. By definition, all languages in EXP, including the NP-complete ones, can be reduced to an EXP-hard language.

Problem 4 (25 points). Show that if both L and \overline{L} are recursively enumerable languages, then L is recursive.

Proof. Suppose that L and \overline{L} are accepted by Turing machines M and \overline{M} , respectively. Then L is decided by Turing machine M', defined as follows. On input x, M' simulates on two different strings both M and \overline{M} in an

interleaved fashion. That is, it simulates a step of M on one string, then a step of \overline{M} on the other, then again another step of M on the first, and so on. Since M accepts L, \overline{M} accepts its complement and x must be in one of the two, it follows that one of the two machines will halt and accept. If M accepts, then M' halts on state "yes." If \overline{M} accepts, then M' halts on "no."