BIN PACKING

e We are given NN positive integers ai,as,...,ay, an

integer C' (the capacity), and an integer B (the number
of bins).

e BIN PACKING asks if these numbers can be partitioned

into B subsets, each of which has total sum at most C.
e Think of packing bags at the check-out counter.

Theorem 46 BIN PACKING s NP-complete.
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INTEGER PROGRAMMING

e INTEGER PROGRAMMING asks whether a system of linear
inequalities with integer coeflicients has an integer

solution.

e In contrast, LINEAR PROGRAMMING asks whether a

system of linear inequalities with integer coefficients has

a rational solution.
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INTEGER PROGRAMMING Is NP-Complete?

e SET COVERING can be expressed by the inequalities
Az > T, Y12 < B,0<uz; <1, where

— x; is one if and only if S; is in the cover.

A is the matrix whose columns are the bit vectors of
the sets 51, 99, .. ..

1 is the vector of 1s.

— The operations in Ax are standard matrix operations.
e This shows INTEGER PROGRAMMING is NP-hard.

e Many NP-complete problems can be expressed as an
INTEGER PROGRAMMING problem.

2Papadimitriou (1981).
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Christos Papadimitriou
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Easier or Harder?®
e Adding restrictions on the allowable problem instances
will not make a problem harder.
— We are now solving a subset of problem instances.

The INDEPENDENT SET proof (p. 302) and the
KNAPSACK proof (p. 361).

SAT to 2SAT (easier by p. 285).

CIRCUIT VALUE to MONOTONE CIRCUIT VALUE
(equally hard by p. 257).

2Thanks to a lively class discussion on October 29, 2003.
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Easier or Harder? (concluded)

e Adding restrictions on the allowable solutions may make
a problem easier, as hard, or harder.

e It is problem dependent.
— MIN CUT to BISECTION WIDTH (harder by p. 328).

LINEAR PROGRAMMING to INTEGER PROGRAMMING
(harder by p. 371).

SAT to NAESAT (equally hard by p. 296) and MAX
CUT to MAX BISECTION (equally hard by p. 326).

3-COLORING to 2-COLORING (easier by p. 347).
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coNP and Function Problems
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coNP

e By definition, coNP is the class of problems whose

complement is in NP.

e NP is the class of problems that have succinct

certificates (recall Proposition 34 on p. 267).

e coNP is therefore the class of problems that have

succinct disqualifications:

— A “no” instance of a problem in coNP possesses a
short proof of its being a “no” instance.

— Only “no” instances have such proofs.
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coNP (continued)

e Suppose L is a coNP problem.
e There exists a polynomial-time nondeterministic
algorithm M such that:

— If x € L, then M (x) = “yes” for all computation
paths.

— If x ¢ L, then M (x) = “no” for some computation
path.
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coNP (concluded)
e Clearly P C coNP.

e [t is not known if
P = NP N coNP.
— Contrast this with

R = RENcoRE

(see Proposition 10 on p. 128).
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Some coNP Problems

e VALIDITY € coNP.
— If ¢ is not valid, it can be disqualified very succinctly:
a truth assignment that does not satisty it.
e SAT COMPLEMENT € coNP.

— SAT COMPLEMENT is the complement of SAT.

— The disqualification is a truth assignment that

satisfies it.

e HAMILTONIAN PATH COMPLEMENT € coNP.

— The disqualification is a Hamiltonian path.
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Some coNP Problems (concluded)

e OPTIMAL TSP (D) € coNP.

— OPTIMAL TSP (D) asks if the optimal tour has a total

distance of B, where B is an input.?

— The disqualification is a tour with a length < B.

2Defined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.
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An Alternative Characterization of coNP

Proposition 47 Let L C X* be a language. Then L € coNP
of and only if there is a polynomially decidable and

polynomially balanced relation R such that

L=A{x:Vy(z,y) € R}.

(As on p. 266, we assume |y| < |z |¥ for some k.)

e L ={x:(x,y) € =R for some y}.

e Because —R remains polynomially balanced, L € NP by
Proposition 34 (p. 267).

Hence L € coNP by definition.
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coNP Completeness

Proposition 48 L is NP-complete if and only if its
complement L = ¥* — L is coNP-complete.

Proof (=; the < part is symmetric)
e Let L’ be any coNP language.
Hence L' € NP.
Let R be the reduction from L’ to L.
So xz € L' if and only if R(z) € L.
Equivalently, z ¢ L’ if and only if R(x) ¢ L (the law of

transposition).
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coNP Completeness (concluded)

e Soz € L' if and only if R(x) € L.

e R is a reduction from L’ to L.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 385



Some coNP-Complete Problems

e SAT COMPLEMENT is coNP-complete.

e VALIDITY is coNP-complete.
— ¢ is valid if and only if —¢ is not satisfiable.
— The reduction from SAT COMPLEMENT to VALIDITY

is hence easy.

e HAMILTONIAN PATH COMPLEMENT is coNP-complete.
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Possible Relations between P, NP, coNP

1. P = NP = coNP.
2. NP = coNP but P £ NP.
3. NP = coNP and P # NP.

e This is the current “consensus.”
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coNP Hardness and NP Hardness?

Proposition 49 If a coNP-hard problem is in NP, then
NP = coNP.

e LLet L € NP be coNP-hard.
e LLet NTM M decide L.

e For any L’ € coNP, there is a reduction R from L’ to L.

L' € NP as it is decided by NTM M (R(x)).

— Alternatively, NP is closed under complement.
e Hence coNP C NP.

e The other direction NP C coNP is symmetric.

2Brassard (1979); Selman (1978).
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coNP Hardness and NP Hardness (concluded)

Similarly,

Proposition 50 If an NP-hard problem is in coNP, then
NP = coNP.

As a result:
e NP-complete problems are very unlikely to be in coNP.

e colNP-complete problems are very unlikely to be in NP.
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The Primality Problem

An integer p is prime if p > 1 and all positive numbers
other than 1 and p itself cannot divide it.

PRIMES asks if an integer IV is a prime number.

Dividing N by 2,3,...,VN is not efficient.

— The length of N is only log N, but /N = 20-5loe N

A polynomial-time algorithm for PRIMES was not found
until 2002 by Agrawal, Kayal, and Saxena!

We will focus on efficient “probabilistic” algorithms for
PRIMES (used in Mathematica, e.g.).
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if n = a® for some a,b > 1 then

return “composite”;
end if
forr=2,3,...,n—1do

if gcd(n,r) > 1 then

return “composite”;
end if
if r is a prime then

Let g be the largest prime factor of r — 1;
if ¢ > 4y/Tlogn and n{""1/9 £ 1 mod r then

break; {Exit the for-loop.}
end if
end if
: end for{r — 1 has a prime factor ¢ > 4y/rlogn.}
: fora=1,2,...,2y/rlogn do
if (x —a)™ # (2™ —a) mod (" — 1) in Z,,[z ] then
return “composite”;
end if
: end for
: return “prime”; {The only place with “prime” output.}

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 391



The Primality Problem (concluded)

e NP N coNP is the class of problems that have succinct
certificates and succinct disqualifications.

— Each “yes” instance has a succinct certificate.
— Each “no” instance has a succinct disqualification.

— No instances have both.

e We will see that PRIMES € NP N coNP.

— In fact, PRIMES € P as mentioned earlier.
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Primitive Roots in Finite Fields

Theorem 51 (Lucas and Lehmer (1927)) # A number
p > 1 is prime if and only if there is a number 1 <r <p

(called the primitive root or generator) such that

1. Y»71 =1 mod p, and

2. rP=1/a £ 1 mod p for all prime divisors q¢ of p — 1.

e We will prove the theorem later (see pp. 403ff).

2Frangois Edouard Anatole Lucas (1842-1891); Derrick Henry
Lehmer (1905-1991).
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Derrick Lehmer (1905-1991)
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Pratt's Theorem

Theorem 52 (Pratt (1975)) PRIMES € NP N coNP.

e PRIMES is in coNP because a succinct disqualification is

a divisor.
e Suppose p is a prime.

e p’s certificate includes the 7 in Theorem 51 (p. 393).

e Use recursive doubling to check if 7P~ =1 mod p in

time polynomial in the length of the input, log, p.

— r,r2,rt, ... mod p, a total of ~ log, p steps.
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The Proof (concluded)

We also need all prime divisors of p — 1: q1,qo, ..., qk.
Checking rP~1)/4% £ 1 mod p is also easy.

Checking q1, qo, ..., q. are all the divisors of p — 1 is easy.
We still need certificates for the primality of the g;’s.

The complete certificate is recursive and tree-like:

C(p) — (’I"; qi1, O(Q1)7 qz2, C(QQ)v ooy 4k, C(Qk))

C'(p) can also be checked in polynomial time.

We next prove that C(p) is succinct.
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The Succinctness of the Certificate

Lemma 53 The length of C(p) is at most quadratic at

51og3 p.

e This claim holds when p =2 or p = 3.

e In general, p — 1 has k£ < log, p prime divisors
1 =2,q2,- -, qk-

— Reason:

e Note also that
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The Proof (continued)

C'(p) requires:

— 2 parentheses;
2k < 2log, p separators (at most 2log, p bits);
r (at most log, p bits);
g1 = 2 and its certificate 1 (at most 5 bits);
g2, -, qr (at most 2log, p bits);

Clg2),- -, Clar)-
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The Proof (concluded)

e ('(p) is succinct because, by induction,

k
C(p)] < 5logyp+5+5)» logg
1=2

2
k
5logyp+5+5 (Z log, qi>

1=2

—1
5log, p + 5 4 5log; pT by inequality (3)

5logy p + 5+ 5(logy p — 1)°
5logs p + 10 — 5logy p < 5log3 p
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A Certificate for 232

Note that 7 is a primitive root modulo 23 and
23 —1=22=2 x11.

So
C'(23) =(7,2,C(2),11,C(11)).

Note that 2 is a primitive root modulo 11 and
11-1=10=2 x 5.

So

O(11) = (2,2,C(2),5,0(5)).

aThanks to a lively discussion on April 24, 2008.
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A Certificate for 23 (concluded)

Note that 2 is a primitive root modulo 5 and 4 = 22.

So
C'(5) =(2,2,C(2)).

In summary,

C(23) = (7,2,C(2),11, (2,2, C(2), 5, (2,2,C(2)))).

Note that whether the primitive root r is easy to find is

irrelevant to the validity of the certificate.

Note also that there may be multiple choices for r.
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Basic Modular Arithmetics®
Let m,n € Z*.
m|n means m divides n and m is n’s divisor.

We call the numbers 0,1,...,n — 1 the residue modulo

n.

The greatest common divisor of m and n is denoted

ged(m,n).

The r in Theorem 51 (p. 393) is a primitive root of p.

We now prove the existence of primitive roots and then
Theorem 51.

@(Carl Friedrich Gauss.
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Euler's® Totient or Phi Function

Let
O(n)={m:1<m<n,ged(m,n) =1}

be the set of all positive integers less than n that are

prime to n (Z is a more popular notation).
— $(12) = {1,5,7,11}.

Define Euler’s function of n to be ¢(n) = |®(n)].

¢(p) = p — 1 for prime p, and ¢(1) = 1 by convention.

Euler’s function is not expected to be easy to compute

without knowing n’s factorization.

2Leonhard Euler (1707-1783).
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Two Properties of Euler's Function

The inclusion-exclusion principle* can be used to prove the
following.

Lemma 54 ¢(n) =n][,,(1 - %)

€e

o If n=pi'ps?---pi* is the prime factorization of n, then

¢(n)—n7f[1<1—p1i).

Corollary 55 ¢(mn) = ¢(m) ¢(n) if ged(m,n) = 1.

@Consult any Discrete Mathematics textbook.
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A Key Lemma
Lemma 56 ) . &(m)=n.

o Let Hle p,]fi be the prime factorization of n and consider

14

[116() + o) + -+ o(0f") ] (4)
i=1
e Equation (4) equals n because ¢(pf) = p¥ — p,’f_l by

Lemma 54.

e Expand Eq. (4) to yield

J4
S T o).

K, <ki,...,k,<kgi=1
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The Proof (concluded)
By Corollary 55 (p. 405),

So Eq. (4) becomes

=

k! <ki,....k) <k

1=1

/

l k, . . . . Y .
Each [[,_; p;* is a unique divisor of n = [],_; pfz.

Equation (4) becomes

> é(m).

m|n
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The Density Attack for PRIMES

e It works, but does it work well?

e The ratio of numbers < n relatively prime to n (the
white area) is ¢(n)/n.
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The Density Attack for PRIMES (concluded)

e When n = pqg, where p and ¢ are distinct primes,

—p—q+1 1 1
¢(n) _pg—p—gq+l . 1 1

n pq qg P

e So the ratio of numbers < n not relatively prime to n
(the grey area) is < (1/q) + (1/p).
— The “density attack” has probability < 2/y/n of
factoring n = pg when p ~ ¢ = O(y/n).
— The “density attack” to factor n = pq hence takes
Q(y/n) steps on average when p ~ g = O({/n).

— This running time is exponential: (29-510827),
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The Chinese Remainder Theorem

e Let n =nyns---ni, where n; are pairwise relatively

prime.

e For any integers ai,as,...,ax, the set of simultaneous

equations

a1 mod nq,

as mod ng,

X ar, mod nyg,

has a unique solution modulo n for the unknown =.
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Fermat's “Little” Theorem?
Lemma 57 For all0 < a < p, a»~! =1 mod p.

e Consider a®(p) = {am mod p: m € ®(p)}.

e ad(p) =

O(p).
— a®(p) C ®(p) as a remainder must be between 0 and

p— 1.
— Suppose am = am’ mod p for m > m’, where
m, m’ € ®(p).

— That means a(m —m’) = 0 mod p, and p divides a or

m — m’, which is impossible.

2Pierre de Fermat (1601-1665).
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The Proof (concluded)
Multiply all the numbers in ®(p) to yield (p — 1)!.

Multiply all the numbers in a®(p) to yield a?~1(p — 1)!.

As a®(p) = ®(p), a1 (p —1)! = (p — 1)! mod p.

Finally, a?~! = 1 mod p because p f(p — 1)!.
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The Fermat-Euler Theorem?

Corollary 58 For all a € ®(n), a®™ =1 mod n.

e The proof is similar to that of Lemma 57 (p. 411).
e Consider a®(n) = {am mod n : m € ®(n)}.
e aP(n) = d(n).
— a®(n) C ®(n) as a remainder must be between 0 and
n — 1 and relatively prime to n.

— Suppose am = am’ mod n for m’ < m < n, where
m,m’ € ®(n).
— That means a(m —m') = 0 mod n, and n divides a or

m — m/, which is impossible.

2Proof by Mr. Wei-Cheng Cheng (R93922108) on November 24, 2004.
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The Proof (concluded)?®

o Multiply all the numbers in ®(n) to yield [[,,cq(,) m-

e Multiply all the numbers in a®(n) to yield
a(b(n) HmECI)(n) m.
e As a®(n) = P(n),

H m = q®(" H m | mod n.

me®(n) med(n)

e Finally, a®™ = 1 mod n because n [ ILcam m

aSome typographical errors corrected by Mr. Chen, Jung-Ying
(D95723006) on November 18, 2008.
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An Example

o As 12 =22%x 3,

$(12) = 12 x (1—%) (1-%):4.

o In fact, ®(12) = {1,5,7,11}.

e For example,
5% = 625 = 1 mod 12.
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Exponents

e The exponent of m € ®(p) is the least k € Z™ such that
mF =1 mod p.

e Every residue s € ®(p) has an exponent.

— 1,s,5°%, 5%, ... eventually repeats itself modulo p, say

s = s7 mod p, which means s/~* = 1 mod p.

e If the exponent of m is k and m® = 1 mod p, then k|/.

— Otherwise, { = gk + a for 0 < a < k, and

mt = ma+te = m? = 1 mod p, a contradiction.

Lemma 59 Any nonzero polynomial of degree k has at most

k distinct roots modulo p.
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