
Nondeterministic Space Complexity Classes

• Let L be a language.

• Then
L ∈ NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).

• NSPACE(f(n)) is a set of languages.

• As in the linear speedup theorem (Theorem 3 on p. 61),
constant coefficients do not matter.
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Graph Reachability

• Let G(V, E) be a directed graph (digraph).

• reachability asks if, given nodes a and b, does G

contain a path from a to b?

• Can be easily solved in polynomial time by breadth-first
search.

• How about the nondeterministic space complexity?
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The First Try in NSPACE(n log n)

1: x1 := a; {Assume a 6= b.}
2: for i = 2, 3, . . . , n do
3: Guess xi ∈ {v1, v2, . . . , vn}; {The ith node.}
4: end for
5: for i = 2, 3, . . . , n do
6: if (xi−1, xi) 6∈ E then
7: “no”;
8: end if
9: if xi = b then

10: “yes”;
11: end if
12: end for
13: “no”;
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In Fact reachability ∈ NSPACE(log n)

1: x := a;
2: for i = 2, 3, . . . , n do
3: Guess y ∈ {v1, v2, . . . , vn}; {The next node.}
4: if (x, y) 6∈ E then
5: “no”;
6: end if
7: if y = b then
8: “yes”;
9: end if

10: x := y;
11: end for
12: “no”;
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Space Analysis

• Variables i, x, and y each require O(log n) bits.

• Testing (x, y) ∈ E is accomplished by consulting the
input string with counters of O(log n) bits long.

• Hence
reachability ∈ NSPACE(log n).

– reachability with more than one terminal node
also has the same complexity.

• reachability ∈ P (p. 184).
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Undecidability
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It seemed unworthy of a grown man
to spend his time on such trivialities,

but what was I to do?
— Bertrand Russell (1872–1970),

Autobiography, Vol. I
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Infinite Sets

• A set is countable if it is finite or if it can be put in
one-one correspondence with N = { 0, 1, . . . }, the set of
natural numbers.

– Set of integers Z.

∗ 0 ↔ 0, 1 ↔ 1, 2 ↔ 3, 3 ↔ 5, . . . ,−1 ↔ 2,−2 ↔
4,−3 ↔ 6, . . ..

– Set of positive integers Z+: i− 1 ↔ i.

– Set of odd integers: (i− 1)/2 ↔ i.

– Set of rational numbers: See next page.
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Rational Numbers Are Countable

5/2
5/1


1/5
1/2
1/1
 1/3
 1/4


2/1
 2/2
 2/3
 2/4


3/1
 3/2
 3/3
 3/4


4/1
 4/2
 4/3


1/6


2/5


6/1
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Cardinality

• For any set A, define |A| as A’s cardinality (size).

• Two sets are said to have the same cardinality, or

|A| = |B| or A ∼ B,

if there exists a one-to-one correspondence between their
elements.

• 2A denotes set A’s power set, that is {B : B ⊆ A}.
– If |A| = k, then |2A| = 2k.

– |A| < |2A| when A is finite as k < 2k.
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Cardinality (concluded)

• Define |A| ≤ |B| if there is a one-to-one correspondence
between A and a subset of B’s.

• Define |A| < |B| if |A| ≤ |B| but |A| 6= |B|.
• Obviously, if A ⊆ B, then |A| ≤ |B|.
• But if A ( B, then |A| < |B|?
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Cardinality and Infinite Sets

• If A and B are infinite sets, it is possible that A ( B yet
|A| = |B|.
– The set of integers properly contains the set of odd

integers.

– But the set of integers has the same cardinality as
the set of odd integers (p. 96).

• A lot of “paradoxes” arise.
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Galileo’sa Paradox (1638)

• The squares of the positive integers can be placed in
one-to-one correspondence with all the positive integers.

• This is contrary to the axiom of Euclidb that the whole
is greater than any of its proper parts.

• Resolution of paradoxes: Pick the notion that results in
“better” mathematics.

• The difference between a mathematical paradox and a
contradiction is often a matter of opinion.

aGalileo (1564–1642).
bEuclid (325 B.C.–265 B.C.).
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Hilbert’sa Paradox of the Grand Hotel

• For a hotel with a finite number of rooms with all the
rooms occupied, a new guest will be turned away.

• Now imagine a hotel with an infinite number of rooms,
all of which are occupied.

• A new guest comes and asks for a room.

• “But of course!” exclaims the proprietor.

• He moves the person previously occupying Room 1 to
Room 2, the person from Room 2 to Room 3, and so on.

• The new customer now occupies Room 1.
aDavid Hilbert (1862–1943).
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Hilbert’s Paradox of the Grand Hotel (concluded)

• Now imagine a hotel with an infinite number of rooms,
all taken up.

• An infinite number of new guests come in and ask for
rooms.

• “Certainly,” says the proprietor.

• He moves the occupant of Room 1 to Room 2, the
occupant of Room 2 to Room 4, and so on.

• Now all odd-numbered rooms become free and the
infinity of new guests can be accommodated in them.

• “There are many rooms in my Father’s house, and I am
going to prepare a place for you.” (John 14:3)
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David Hilbert (1862–1943)
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Cantor’sa Theorem

Theorem 6 The set of all subsets of N (2N) is infinite and
not countable.

• Suppose it is countable with f : N→ 2N being a
bijection.

• Consider the set B = {k ∈ N : k 6∈ f(k)} ⊆ N.

• Suppose B = f(n) for some n ∈ N.

aGeorg Cantor (1845–1918). According to Kac and Ulam, “[If] one

had to name a single person whose work has had the most decisive in-

fluence on the present spirit of mathematics, it would almost surely be

Georg Cantor.”
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The Proof (concluded)

• If n ∈ f(n) = B, then n ∈ B, but then n 6∈ B by B’s
definition.

• If n 6∈ f(n) = B, then n 6∈ B, but then n ∈ B by B’s
definition.

• Hence B 6= f(n) for any n.

• f is not a bijection, a contradiction.
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Georg Cantor (1845–1918)
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Cantor’s Diagonalization Argument Illustrated

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

B

1 2 3 4 5 6
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A Corollary of Cantor’s Theorem

Corollary 7 For any set T , finite or infinite,

|T | < | 2T |.

• The inequality holds in the finite T case.

• Assume T is infinite now.

• To prove |T | ≤ |2T |, simply consider f(x) = {x} ∈ 2T .

– f associates T = { a, b, c, . . . } with
{ { a }, { b }, { c }, . . . } ⊆ 2T .

• To prove the strict inequality |T | � |2T |, we use the
same argument as Cantor’s theorem.
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A Second Corollary of Cantor’s Theorem

Corollary 8 The set of all functions on N is not countable.

• It suffices to prove it for functions from N to {0, 1}.
• Every such function f : N→ {0, 1} determines a set

{n : f(n) = 1} ⊆ N

and vice versa.

• So the set of functions from N to {0, 1} has cardinality
| 2N |.

• Corollary 7 (p. 109) then implies the claim.
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Existence of Uncomputable Problems

• Every program is a finite sequence of 0s and 1s, thus a
nonnegative integer.

• Hence every program corresponds to some integer.

• The set of programs is countable.

• A function is a mapping from integers to integers.

• The set of functions is not countable by Corollary 8
(p. 110).

• So there are functions for which no programs exist.
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Universal Turing Machinea

• A universal Turing machine U interprets the input
as the description of a TM M concatenated with the
description of an input to that machine, x.

– Both M and x are over the alphabet of U .

• U simulates M on x so that

U(M ;x) = M(x).

• U is like a modern computer, which executes any valid
machine code, or a Java Virtual machine, which
executes any valid bytecode.

aTuring (1936).
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The Halting Problem

• Undecidable problems are problems that have no
algorithms or languages that are not recursive.

• We knew undecidable problems exist (p. 111).

• We now define a concrete undecidable problem, the
halting problem:

H = {M ; x : M(x) 6=↗}.

– Does M halt on input x?
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H Is Recursively Enumerable

• Use the universal TM U to simulate M on x.

• When M is about to halt, U enters a “yes” state.

• If M(x) diverges, so does U .

• This TM accepts H.

• Membership of x in any recursively enumerative
language accepted by M can be answered by asking

M ; x ∈ H?
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H Is Not Recursive

• Suppose there is a TM MH that decides H.

• Consider the program D(M) that calls MH :
1: if MH(M ; M) = “yes” then

2: ↗; {Writing an infinite loop is easy, right?}
3: else

4: “yes”;

5: end if

• Consider D(D):

– D(D) =↗⇒ MH(D; D) = “yes” ⇒ D; D ∈ H ⇒
D(D) 6=↗, a contradiction.

– D(D) = “yes” ⇒ MH(D; D) = “no” ⇒ D; D 6∈ H ⇒
D(D) =↗, a contradiction.
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Comments

• Two levels of interpretations of M :

– A sequence of 0s and 1s (data).

– An encoding of instructions (programs).

• There are no paradoxes.

– Concepts should be familiar to computer scientists.

– Feed a C compiler to a C compiler, a Lisp interpreter
to a Lisp interpreter, etc.
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Self-Loop Paradoxes

Cantor’s Paradox (1899): Let T be the set of all sets.a

• Then 2T ⊆ T because 2T is a set.

• But we know | 2T | > |T | (p. 109)!

• We got a “contradiction.”

• So what gives?

• Are we willing to give up Cantor’s theorem?

• If not, what is a set?
aRecall this ontological argument for the existence of God by

St Anselm (–1109) in the 11th century: If something is possible but is

not part of God, then God is not the greatest possible object of thought,

a contradiction.
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Self-Loop Paradoxes (continued)

Russell’s Paradox (1901): Consider R = {A : A 6∈ A}.
• If R ∈ R, then R 6∈ R by definition.

• If R 6∈ R, then R ∈ R also by definition.

• In either case, we have a “contradiction.”

Eubulides: The Cretan says, “All Cretans are liars.”

Liar’s Paradox: “This sentence is false.”

Hypochondriac: a patient (like Gödel) with imaginary
symptoms and ailments.
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Bertrand Russell (1872–1970)
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Self-Loop Paradoxes (concluded)

Sharon Stone in The Specialist (1994): “I’m not a
woman you can trust.”

Spin City: “I am not gay, but my boyfriend is.”

Numbers 12:3, Old Testament: “Moses was the most
humble person in all the world [· · · ]” (attributed to
Moses).
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Self-Loop Paradoxes and Turing Machine?a

• Can self-loop paradoxes happen to Turing machine?

• If so, will it shake the foundation of the theory of
computation?

• If not, why?
aContributed by a student at Vanung University on June 6, 2008.
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Reductions in Proving Undecidability

• Suppose we are asked to prove L is undecidable.

• Language H is known to be undecidable.

• We try to find a computable transformation (called
reduction) R such thata

∀x {R(x) ∈ L if and only if x ∈ H}.

• We can answer “x ∈ H?” for any x by asking
“R(x) ∈ L?” instead.

• This suffices to prove that L is undecidable.
aContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.
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More Undecidability

• H∗ = {M : M halts on all inputs}.
– Given the question “M ; x ∈ H?” we construct the

following machine:a

Mx(y) : M(x).

– Mx halts on all inputs if and only if M halts on x.

– In other words, Mx ∈ H∗ if and only if M ;x ∈ H.

– So if H∗ were recursive, H would be recursive, a
contradiction.

aSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.

Mx ignores its input y; x is part of Mx’s code but not Mx’s input.
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More Undecidability (concluded)

• {M ; x : there is a y such that M(x) = y}.
• {M ; x : the computation M on input x uses all states of M}.

• {M ; x; y : M(x) = y}.
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Complements of Recursive Languages

Lemma 9 If L is recursive, then so is L̄.

• Let L be decided by M (which is deterministic).

• Swap the “yes” state and the “no” state of M .

• The new machine decides L̄.
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Recursive and Recursively Enumerable Languages

Lemma 10 L is recursive if and only if both L and L̄ are
recursively enumerable.

• Suppose both L and L̄ are recursively enumerable,
accepted by M and M̄ , respectively.

• Simulate M and M̄ in an interleaved fashion.

• If M accepts, then x ∈ L and M ′ halts on state “yes.”

• If M̄ accepts, then x 6∈ L and M ′ halts on state “no.”
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A Very Useful Corollary and Its Consequences

Corollary 11 L is recursively enumerable but not recursive,
then L̄ is not recursively enumerable.

• Suppose L̄ is recursively enumerable.

• Then both L and L̄ are recursively enumerable.

• By Lemma 10 (p. 126), L is recursive, a contradiction.

Corollary 12 H̄ is not recursively enumerable.
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are
recursively enumerable (note that coRE is not RE).

• coRE = {L : L ∈ RE }.
• RE = {L : L 6∈ RE }.

R: The set of all recursive languages.
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R, RE, and coRE (concluded)

• R = RE ∩ coRE (p. 126).

• There exist languages in RE but not in R and not in
coRE.

– Such as H (p. 114, p. 115, and p. 127).

• There are languages in coRE but not in RE.

– Such as H̄ (p. 127).

• There are languages in neither RE nor coRE.
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Undecidability in Logic and Mathematics

• First-order logic is undecidable.a

• Natural numbers with addition and multiplication is
undecidable.b

• Rational numbers with addition and multiplication is
undecidable.c

aChurch (1936).
bRosser (1937).
cRobinson (1948).
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