Nondeterministic Space Complexity Classes

Let L be a language.

Then
L € NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).
NSPACE(f(n)) is a set of languages.

As in the linear speedup theorem (Theorem 3 on p. 61),

constant coeflficients do not matter.
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Graph Reachability

Let G(V, F) be a directed graph (digraph).

REACHABILITY asks if, given nodes a and b, does G
contain a path from a to b7

Can be easily solved in polynomial time by breadth-first
search.

How about the nondeterministic space complexity?
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The First Try in NSPACE(n logn)
. 21 := a; {Assume a # b.}
. fort=2,3,...,ndo
Guess x; € {v1,v2,...,v,}; {The ith node.}
. end for
 fort=2,3,...,ndo
if (x;_1,%;) ¢ E then

44 .
no”;

end if
if x; = b then

44 79

yes';
end if

. end for

. “no” :
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In Fact REACHABILITY € NSPACE(logn)
1 T = a;
2: for 1 =2,3,...,ndo
3:  Guess y € {v1,va,...,v,}; {The next node.}

if (z,y) ¢ F then

“HO” ;

end if
if y = b then

44 79

yes;
end if

10: X =1,
11: end for

7

12: “no”;
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Space Analysis

Variables i, x, and y each require O(logn) bits.

Testing (z,y) € E is accomplished by consulting the
input string with counters of O(logn) bits long.

Hence

REACHABILITY € NSPACE(logn).

— REACHABILITY with more than one terminal node
also has the same complexity.

REACHABILITY € P (p. 184).
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Undecidability
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It seemed unworthy of a grown man
to spend his time on such trivialities,
but what was I to do?

— Bertrand Russell (1872-1970),

Autobiography, Vol. 1
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Infinite Sets

e A set is countable if it is finite or if it can be put in
one-one correspondence with N ={0,1,...}, the set of

natural numbers.
— Set of integers Z.
*x 0—=0,1-1,2—3,3<5,...,— 12 -2«
4, -3 —0,....

Set of positive integers Z7: i — 1 < 1.

Set of odd integers: (i —1)/2 < 1.

Set of rational numbers: See next page.
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Rational Numbers Are Countable

1H—
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Cardinality
e For any set A, define |A| as A’s cardinality (size).
e T'wo sets are said to have the same cardinality, or
Al =|B|] or A~ B,

if there exists a one-to-one correspondence between their

elements.

o 24 denotes set A’s power set, that is {B: B C A}.
— If |A| = k, then |24 = 2F.
— |A] < |24] when A is finite as k < 2%,
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Cardinality (concluded)

Define |A| < |Bj| if there is a one-to-one correspondence

between A and a subset of B'’s.

Define |A| < |B| if |A| < |B| but |A] # |Bj|.
Obviously, if A C B, then |A| < |Bj.

But if A C B, then |A| < |B|?
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Cardinality and Infinite Sets

e If A and B are infinite sets, it is possible that A C B yet
Al = [B].
— The set of integers properly contains the set of odd
integers.
— But the set of integers has the same cardinality as

the set of odd integers (p. 96).

e A lot of “paradoxes” arise.
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Galileo’s* Paradox (1638)

The squares of the positive integers can be placed in
one-to-one correspondence with all the positive integers.

This is contrary to the axiom of Euclid® that the whole

is greater than any of its proper parts.

Resolution of paradoxes: Pick the notion that results in

“better” mathematics.

The difference between a mathematical paradox and a

contradiction is often a matter of opinion.

2Galileo (1564-1642).
PEuclid (325 B.C.-265 B.C.).
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Hilbert's®* Paradox of the Grand Hotel

For a hotel with a finite number of rooms with all the

rooms occupied, a new guest will be turned away.

Now imagine a hotel with an infinite number of rooms,

all of which are occupied.

A new guest comes and asks for a room.

“But of course!” exclaims the proprietor.

He moves the person previously occupying Room 1 to
Room 2, the person from Room 2 to Room 3, and so on.

e The new customer now occupies Room 1.

aDavid Hilbert (1862-1943).
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Hilbert's Paradox of the Grand Hotel (concluded)

Now imagine a hotel with an infinite number of rooms,

all taken up.

An infinite number of new guests come in and ask for

rooms.
“Certainly,” says the proprietor.

He moves the occupant of Room 1 to Room 2, the

occupant of Room 2 to Room 4, and so on.

Now all odd-numbered rooms become free and the

infinity of new guests can be accommodated in them.

“There are many rooms in my Father’s house, and I am
going to prepare a place for you.” (John 14:3)
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David Hilbert (1862-1943)
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Cantor’'s® Theorem

Theorem 6 The set of all subsets of N (2V) is infinite and

not countable.

e Suppose it is countable with f : N — 2N being a

bijection.
e Consider theset B={keN: k¢ f(k)} CN.

e Suppose B = f(n) for some n € N.

2Georg Cantor (1845-1918). According to Kac and Ulam, “[If] one
had to name a single person whose work has had the most decisive in-
fluence on the present spirit of mathematics, it would almost surely be
Georg Cantor.”
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The Proof (concluded)

If n € f(n) = B, then n € B, but then n ¢ B by B’s
definition.

If n¢ f(n) =B, then n & B, but then n € B by B’s
definition.

Hence B # f(n) for any n.

f is not a bijection, a contradiction.
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Georg Cantor (1845-1918)
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Cantor’s Diagonalization Argument lllustrated

4
®
o
(]

6
o
O
o
o
(J
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A Corollary of Cantor’'s Theorem

Corollary 7 For any set T', finite or infinite,

T <|2"].

The inequality holds in the finite 1T’ case.
Assume T is infinite now.

To prove | T'| < |21, simply consider f(z) = {z} € 27.
— f associates T'= {a,b,c,...} with

{{a}. {0}, {c},...} S 2.

To prove the strict inequality |T'| < |21, we use the

same argument as Cantor’s theorem.
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A Second Corollary of Cantor’s Theorem

Corollary 8 The set of all functions on N is not countable.
e It suffices to prove it for functions from N to {0, 1}.

e Every such function f: N — {0,1} determines a set
{n:f(n)=1} N
and vice versa.

e So the set of functions from N to {0, 1} has cardinality
2% ].

e Corollary 7 (p. 109) then implies the claim.
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Existence of Uncomputable Problems

Every program is a finite sequence of Os and 1s, thus a

nonnegative integer.

Hence every program corresponds to some integer.
The set of programs is countable.

A function is a mapping from integers to integers.

The set of functions is not countable by Corollary 8
(p. 110).

So there are functions for which no programs exist.
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Universal Turing Machine?

e A universal Turing machine U interprets the input
as the description of a TM M concatenated with the

description of an input to that machine, .

— Both M and x are over the alphabet of U.

e U simulates M on z so that
UM;xz)=M(x).

e U is like a modern computer, which executes any valid
machine code, or a Java Virtual machine, which

executes any valid bytecode.

2Turing (1936).
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The Halting Problem

e Undecidable problems are problems that have no

algorithms or languages that are not recursive.
e We knew undecidable problems exist (p. 111).

e We now define a concrete undecidable problem, the

halting problem:
H={M;z: M(z)#/}.

— Does M halt on input x?
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H |s Recursively Enumerable

Use the universal TM U to simulate M on x.
When M is about to halt, U enters a “yes” state.
If M (x) diverges, so does U.

This TM accepts H.

Membership of x in any recursively enumerative

language accepted by M can be answered by asking

M;x e H?
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H |s Not Recursive

e Suppose there is a TM My that decides H.

e Consider the program D(M) that calls Mpy:
: if Mg (M; M) = “yes” then
/" {Writing an infinite loop is easy, right?}

44 7

: yes’;
- end if

1
2
3: else
4
5

e Consider D(D):
— D(D) =/= Myu(D;D) = “yes” = D;D € H =
D(D) #,", a contradiction.
(D) = “yes” = Myx(D;D) = “no” = D;D ¢ H =
(D)

/", a contradiction.
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Comments

e Two levels of interpretations of M:

— A sequence of 0s and 1s (data).

— An encoding of instructions (programs).

e There are no paradoxes.
— Concepts should be familiar to computer scientists.

— Feed a C compiler to a C compiler, a Lisp interpreter
to a Lisp interpreter, etc.
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Self-Loop Paradoxes

Cantor’s Paradox (1899): Let T be the set of all sets.?
e Then 27 C T because 27 is a set.
But we know |27 | > |T'| (p. 109)!
We got a “contradiction.”
So what gives?
Are we willing to give up Cantor’s theorem?

If not, what is a set?

2Recall this ontological argument for the existence of God by
St Anselm (—1109) in the 11th century: If something is possible but is
not part of God, then God is not the greatest possible object of thought,

a contradiction.
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Self-Loop Paradoxes (continued)

Russell’s Paradox (1901): Consider R={A: A& A}.
o If R € R, then R € R by definition.
o If R¢ R, then R € R also by definition.

e In either case, we have a “contradiction.”
Eubulides: The Cretan says, “All Cretans are liars.”
Liar’s Paradox: “This sentence is false.”

Hypochondriac: a patient (like Godel) with imaginary

symptoms and ailments.
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Bertrand Russell (1872-1970)
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Self-Loop Paradoxes (concluded)

Sharon Stone in The Specialist (1994): “I'm not a

woman you can trust.”
Spin City: “I am not gay, but my boyfriend is.”

Numbers 12:3, Old Testament: “Moses was the most
humble person in all the world [---]|” (attributed to
Moses).
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Self-Loop Paradoxes and Turing Machine??

e Can self-loop paradoxes happen to Turing machine?

e If so, will it shake the foundation of the theory of

computation?

e If not, why?

@Contributed by a student at Vanung University on June 6, 2008.
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Reductions in Proving Undecidability

Suppose we are asked to prove L is undecidable.
Language H is known to be undecidable.

We try to find a computable transformation (called
reduction) R such that?®

Vx {R(x) € L if and only if z € H}.

We can answer “xz € H?” for any x by asking
“R(x) € L?” instead.

e This suffices to prove that L is undecidable.

2Contributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.
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More Undecidability

e H* ={M : M halts on all inputs}.

— Given the question “M;x € H?” we construct the

following machine:?*
M (y) - M(x).

M, halts on all inputs if and only if M halts on =.
In other words, M, € H* if and only if M;z € H.

So if H* were recursive, H would be recursive, a

contradiction.

2Simplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.
M, ignores its input y; x is part of M;’s code but not M_,’s input.
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More Undecidability (concluded)
e {M;x : there is a y such that M (z) = y}.

e {M;x :the computation M on input x uses all states of M }.

o {Miz;y: M(z)=y}.
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Complements of Recursive Languages

Lemma 9 If L is recursive, then so is L
e Let L be decided by M (which is deterministic).

e Swap the “yes” state and the “no” state of M.

e The new machine decides L
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Recursive and Recursively Enumerable Languages

Lemma 10 L is recursive if and only if both L and L are

recursively enumerable.

e Suppose both L and L are recursively enumerable,
accepted by M and M, respectively.

e Simulate M and M in an interleaved fashion.
e If M accepts, then x € L and M’ halts on state “yes.”

o If M accepts, then x ¢ L and M’ halts on state “no.”
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A Very Useful Corollary and Its Consequences

Corollary 11 L s recursively enumerable but not recursive,

then L is not recursively enumerable.
e Suppose L is recursively enumerable.
e Then both L and L are recursively enumerable.
e By Lemma 10 (p. 126), L is recursive, a contradiction.

Corollary 12 H is not recursively enumerable.
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are

recursively enumerable (note that coRE is not RE).
e oRE={L:LecRE}.
e RE={L:L¢RE}.

R: The set of all recursive languages.
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R, RE, and coRE (concluded)
R = RENcoRE (p. 126).

There exist languages in RE but not in R and not in
coRE.

— Such as H (p. 114, p. 115, and p. 127).

There are languages in coRE but not in RE.

— Such as H (p. 127).

There are languages in neither RE nor coRE.
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Undecidability in Logic and Mathematics

e First-order logic is undecidable.?

e Natural numbers with addition and multiplication is
undecidable.?

e Rational numbers with addition and multiplication is

undecidable.€

2Church (1936).

PRosser (1937).
“Robinson (1948).
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