Turing-Computable Functions

- Let $f : (\Sigma - \{\underline{\underline{\text{L}}}}\}^* \rightarrow \Sigma^*$.
 - Optimization problems, root finding problems, etc.

- Let M be a TM with alphabet Σ.

- M computes f if for any string $x \in (\Sigma - \{\underline{\underline{\text{L}}}}\}^*$, $M(x) = f(x)$.

- We call f a recursive function\(^a\) if such an M exists.

\(^a\)Kurt Gödel (1931).
Kurt Gödel (1906–1978)
Church’s Thesis or the Church-Turing Thesis

- What is computable is Turing-computable; TMs are algorithms (Kleene 1953).
- Many other computation models have been proposed.
 - Recursive function (Gödel), \(\lambda \) calculus (Church),
 formal language (Post), assembly language-like RAM
 (Shepherdson & Sturgis), boolean circuits (Shannon),
 extensions of the Turing machine (more strings,
 two-dimensional strings, and so on), etc.
- All have been proved to be equivalent.
- No “intuitively computable” problems have been shown not to be Turing-computable yet.
Church’s Thesis or the Church-Turing Thesis (concluded)

• The thesis may sound merely definitional at first.

• It can also be interpreted asa a profound claim about the physical laws of our universe, i.e.: any physical system that purports to be a computer is not capable of any computational task that a Turing machine is incapable of.

aSmith (1998).
Alonso Church (1903–1995)
Stephen Kleene (1909–1994)
Extended Church’s Thesis

• All “reasonably succinct encodings” of problems are *polynomially related*.
 – Representations of a graph as an adjacency matrix and as a linked list are both succinct.
 – The *unary* representation of numbers is not succinct.
 – The *binary* representation of numbers is succinct.
 * 1001 vs. 111111111.

• All numbers for TMs will be binary from now on.

Some call it “polynomial Church’s thesis,” which Lószló Lovász attributed to Leonid Levin.
Turing Machines with Multiple Strings

• A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.

• K, Σ, s are as before.

• $\delta : K \times \Sigma^k \rightarrow (K \cup \{h, \text{“yes”}, \text{“no”}\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k$.

• All strings start with a \triangleright.

• The first string contains the input.

• Decidability and acceptability are the same as before.

• When TMs compute functions, the output is on the last (kth) string.
PALINDROME Revisited

• A 2-string TM can decide PALINDROME in $O(n)$ steps.
 – It copies the input to the second string.
 – The cursor of the first string is positioned at the first symbol of the input.
 – The cursor of the second string is positioned at the last symbol of the input.
 – The two cursors are then moved in opposite directions until the ends are reached.
 – The machine accepts if and only if the symbols under the two cursors are identical at all steps.
Configurations and Yielding

- The concept of configuration and yielding is the same as before except that a configuration is a \((2k + 1)\)-triple
 \[
 (q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).
 \]
 - \(w_iu_i\) is the \(i\)th string.
 - The \(i\)th cursor is reading the last symbol of \(w_i\).
 - Recall that \(\triangleright\) is each \(w_i\)’s first symbol.

- The \(k\)-string TM’s initial configuration is
 \[
 (s, \triangleright, x, \triangleright, \epsilon, \triangleright, \epsilon, \ldots, \triangleright, \epsilon).
 \]

\[1 \quad 2 \quad 3 \quad \ldots \quad k\]
Time Complexity

• The multistring TM is the basis of our notion of the time expended by TM computations.

• If a k-string TM M halts after t steps on input x, then the time required by M on input x is t.

• If $M(x) = \searrow$, then the time required by M on x is ∞.

• Machine M operates within time $f(n)$ for $f : \mathbb{N} \rightarrow \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.

 – $|x|$ is the length of string x.

• Function $f(n)$ is a time bound for M.

\[0 \leq f(n) \leq 1 + k + |S_0| + |S_1| + \ldots + |S_n| \]
Time Complexity Classesa

- Suppose language $L \subseteq (\Sigma - \{\square\})^*$ is decided by a multistring TM operating in time $f(n)$.
- We say $L \in \text{TIME}(f(n))$.
- $\text{TIME}(f(n))$ is the set of languages decided by TMs with multiple strings operating within time bound $f(n)$.
- $\text{TIME}(f(n))$ is a complexity class.
 - \textsc{Palindrome} is in $\text{TIME}(f(n))$, where $f(n) = O(n)$.

aHartmanis and Stearns (1965); Hartmanis, Lewis, and Stearns (1965).
The Simulation Technique

Theorem 2 Given any k-string M operating within time $f(n)$, there exists a (single-string) M' operating within time $O(f(n)^2)$ such that $M(x) = M'(x)$ for any input x.

- The single string of M' implements the k strings of M.
- Represent configuration $(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)$ of M by configuration

 $$(q, \triangleright w'_1 u_1 \triangleleft w'_2 u_2 \triangleleft \cdots \triangleleft w'_k u_k \triangleleft \triangleleft)$$

 of M'.

 - \triangleleft is a special delimiter.

 - w'_i is w_i with the first\(^a\) and last symbols “primed.”

\(^a\)The first symbol is always \triangleright.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University
The Proof (continued)

- The “priming” of the last symbol of w_i ensures that M' knows which symbol is under the cursor for each simulated string.\(^a\)

- Recall the requirement on p. 17 that $\delta(q, \triangleright) = (p, \triangleright, \rightarrow)$ so that the cursor is not allowed to move to the left of \triangleright.

- We use the primed version of the first symbol of w_i (so \triangleright becomes \triangleright').

- That ensures the single cursor of M' can move *between* the simulated strings of M.\(^b\)

\(^a\) Added because of comments made by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

\(^b\) Thanks to a lively discussion on September 22, 2009.
The Proof (continued)

• The initial configuration of M' is

\[(s, \triangleright \triangleright' x \triangleleft \triangleright' \triangleleft \cdots \triangleright' \triangleleft \triangleleft), \]

\[\text{\(k - 1\) pairs}\]

• We simulate each move of M thus:

1. M' scans the string to pick up the k symbols under the cursors.
 - The states of M' must be enlarged to include $K \times \Sigma^k$ to remember them.
 - The transition functions of M' must also reflect it.
2. M' then changes the string to reflect the overwriting of symbols and cursor movements of M.
The Proof (continued)

- It is possible that some strings of M need to be lengthened (see next page).
 - The linear-time algorithm on p. 32 can be used for each such string.
- The simulation continues until M halts.
- M' erases all strings of M except the last one.
- Since M halts within time $f(|x|)$, none of its strings ever becomes longer than $f(|x|)$.
- The length of the string of M' at any time is $O(kf(|x|))$.

\footnote{We tacitly assume $f(n) \geq n$.}
The Proof (concluded)

• Simulating each step of M takes, per string of M, $O(kf(|x|))$ steps.
 - $O(f(|x|))$ steps to collect information.
 - $O(kf(|x|))$ steps to write and, if needed, to lengthen the string.

• M' takes $O(k^2f(|x|))$ steps to simulate each step of M because there are k strings.

• As there are $f(|x|)$ steps of M to simulate, M' operates within time $O(k^2f(|x|)^2)$.
Linear Speedupa

Theorem 3 Let $L \in \text{TIME}(f(n))$. Then for any $\epsilon > 0$, $L \in \text{TIME}(f'(n))$, where $f'(n) = \epsilon f(n) + n + 2$.

aHartmanis and Stearns (1965).
Implications of the Speedup Theorem

- State size can be traded for speed.
 - $m^k \cdot |\Sigma|^{3mk}$-fold increase to gain a speedup of $O(m)$.

- If $f(n) = cn$ with $c > 1$, then c can be made arbitrarily close to 1.

- If $f(n)$ is superlinear, say $f(n) = 14n^2 + 31n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
 - Arbitrary linear speedup can be achieved.
 - This justifies the asymptotic big-O notation.
\[P\]

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term \(n^k\) for some \(k \geq 1\).

- If \(L\) is a polynomially decidable language, it is in \(\text{TIME}(n^k)\) for some \(k \in \mathbb{N}\).
 - Clearly, \(\text{TIME}(n^k) \subseteq \text{TIME}(n^{k+1})\).

- The union of all polynomially decidable languages is denoted by \(P\):
 \[
P = \bigcup_{k>0} \text{TIME}(n^k).
 \]

- \(P\) contains problems that can be efficiently solved.
Space Complexity

• Consider a k-string TM M with input x.

• Assume non-\sqcup is never written over by \sqcup.\(^a\)

 – The purpose is not to artificially downplay the space requirement.

• If M halts in configuration

 ($H, w_1, u_1, w_2, u_2, \ldots, w_k, u_k$), then the space required by M on input x is $\sum_{i=1}^{k} |w_iu_i|$.

\(^a\)Corrected by Ms. Chuan-Ju Wang (R95922018) on September 27, 2006.
Space Complexity (continued)

• We do not charge the space used only for input and output.

• Let $k > 2$ be an integer.

• A k-string Turing machine with input and output is a k-string TM that satisfies the following conditions.
 – The input string is read-only.
 – The last string, the output string, is write-only.
 – So the cursor never moves to the left.
 – The cursor of the input string does not wander off into the $\|$s.
Space Complexity (concluded)

- If M is a TM with input and output, then the space required by M on input x is $\sum_{i=2}^{k-1} |w_iu_i|$.

- Machine M operates within space bound $f(n)$ for $f : \mathbb{N} \rightarrow \mathbb{N}$ if for any input x, the space required by M on x is at most $f(|x|)$.
Space Complexity Classes

• Let L be a language.

• Then

\[L \in \text{SPACE}(f(n)) \]

if there is a TM with input and output that decides L and operates within space bound $f(n)$.

• $\text{SPACE}(f(n))$ is a set of languages.
 - \textsc{palindrome} $\in \text{SPACE}(\log n)$: Keep 3 counters.

• As in the linear speedup theorem (Theorem 3), constant coefficients do not matter.
Nondeterminism\(^a\)

- A **nondeterministic Turing machine** (NTM) is a quadruple \(N = (K, \Sigma, \Delta, s)\).
- \(K, \Sigma, s\) are as before.
- \(\Delta \subseteq K \times \Sigma \times (K \cup \{h, “yes”, “no”\}) \times \Sigma \times \{-, -, \rightarrow\}\) is a relation, not a function.\(^b\)
 - For each state-symbol combination, there may be multiple valid next steps—or none at all.
 - Multiple instructions may be applicable.

\(^a\)Rabin and Scott (1959).

\(^b\)Corrected by Mr. Chen, Jung-Ying (D95723006) on September 23, 2008.
Nondeterminism (concluded)

• Think of the program as lines of codes:

\[(q_1, \sigma_1, p_1, \rho_1, D_1) \in \Delta,\]
\[(q_2, \sigma_2, p_2, \rho_2, D_2) \in \Delta,\]
\[\vdots\]
\[(q_n, \sigma_n, p_n, \rho_n, D_n) \in \Delta.\]

• A configuration yields another configuration in one step if there exists a rule in \(\Delta \) that makes this happen.
Michael O. Rabin (1931–)
Dana Stewart Scott (1932–)
Computation Tree and Computation Path

\[s \]

- \[h \]
 - \["no" \]
 - \[h \]
 - \["yes" \]

- \["yes" \]

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University
Decidability under Nondeterminism

- Let \(L \) be a language and \(N \) be an NTM.
- \(N \) decides \(L \) if for any \(x \in \Sigma^* \), \(x \in L \) if and only if there is a sequence of valid configurations that ends in “yes.”
 - It is not required that the NTM halts in all computation paths.\(^a\)
 - If \(x \notin L \), no nondeterministic choices should lead to a “yes” state.
- What is key is the algorithm’s overall behavior not whether it gives a correct answer for each particular run.
- Determinism is a special case of nondeterminism.

\(^a\)So “accepts” may be a more proper term here.
An Example

- Let L be the set of logical conclusions of a set of axioms.
 - Predicates not in L may be false under the axioms.
 - They may also be independent of the axioms.
 * That is, they can be assumed true or false without contradicting the axioms.
An Example (concluded)

• Let ϕ be a predicate whose validity we would like to prove.

• Consider the nondeterministic algorithm:
 1: $b := \text{true}$;
 2: \textbf{while} the input predicate $\phi \neq b$ \textbf{do}
 3: Generate a logical conclusion of b by applying one of the axioms; \{Nondeterministic choice.\}
 4: Assign this conclusion to b;
 5: \textbf{end while}
 6: “yes”;

• This algorithm decides L.
Complementing a TM’s Halting States

• Let M decide L, and M' be M after “yes” \leftrightarrow “no”.

• If M is a (deterministic) TM, then M' decides \overline{L}.

• But if M is an NTM, then M' may not decide \overline{L}.

 – It is possible that both M and M' accept x (see next page).

 – When this happens, M and M' accept languages that are not complements of each other.
Time Complexity under Nondeterminism

• Nondeterministic machine N decides L in time $f(n)$, where $f : \mathbb{N} \to \mathbb{N}$, if
 – N decides L, and
 – for any $x \in \Sigma^*$, N does not have a computation path longer than $f(|x|)$.

• We charge only the “depth” of the computation tree.
Time Complexity Classes under Nondeterminism

- $\text{NTIME}(f(n))$ is the set of languages decided by NTMs within time $f(n)$.
- $\text{NTIME}(f(n))$ is a complexity class.
NP

- Define

$$NP = \bigcup_{k>0} NTIME(n^k).$$

- Clearly P \subseteq NP.

- Think of NP as efficiently verifiable problems.
 - Boolean satisfiability (p. 146).

- The most important open problem in computer science is whether P = NP.
Simulating Nondeterministic TMs

Surprisingly, nondeterminism does not add power to TMs.

Theorem 4 Suppose language L is decided by an NTM N in time $f(n)$. Then it is decided by a 3-string deterministic TM M in time $O(c^{f(n)})$, where $c > 1$ is some constant depending on N.

- On input x, M goes down every computation path of N using *depth-first* search.
 - M does *not* need to know $f(n)$.
 - As N is time-bounded, the depth-first search will not run indefinitely.
The Proof (concluded)

- If some path leads to “yes,” then M enters the “yes” state.

- If none of the paths leads to “yes,” then M enters the “no” state.

Corollary 5 \(\text{NTIME}(f(n)) \subseteq \bigcup_{c>1} \text{TIME}(c^{f(n)}) \).
NTIME vs. TIME

• Does converting an NTM into a TM require exploring all of the computation paths of the NTM as done in Theorem 4 (p. 81)?

• This is the most important question in theory with practical implications.
A Nondeterministic Algorithm for Satisfiability

φ is a boolean formula with n variables.

1: for \(i = 1, 2, \ldots, n \) do
2: Guess \(x_i \in \{0, 1\} \); \{Nondeterministic choice.\}
3: end for
4: {Verification:}
5: if \(\phi(x_1, x_2, \ldots, x_n) = 1 \) then
6: “yes”;
7: else
8: “no”;
9: end if
The Computation Tree for Satisfiability

$x_1 = 0$

$x_2 = 1$

$x_3 = 1$

$x_4 = 0$

$x_5 = 0$

$x_6 = 1$

$x_7 = 1$

$x_8 = 0$

“no” “yes” “no” “yes” “yes” “no” “no” “no” “yes”
Analysis

• The algorithm decides language \(\{ \phi : \phi \text{ is satisfiable} \} \).
 – The computation tree is a complete binary tree of depth \(n \).
 – Every computation path corresponds to a particular truth assignment out of \(2^n \).
 – \(\phi \) is satisfiable if and only if there is a computation path (truth assignment) that results in “yes.”

• General paradigm: Guess a “proof” and then verify it.
The Traveling Salesman Problem

• We are given n cities $1, 2, \ldots, n$ and integer distances d_{ij} between any two cities i and j.

• Assume $d_{ij} = d_{ji}$ for convenience.

• The traveling salesman problem (TSP) asks for the total distance of the shortest tour of the cities.

• The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input.

• Both problems are extremely important but equally hard (p. 338 and p. 438).
A Nondeterministic Algorithm for TSP (D)

1: for $i = 1, 2, \ldots, n$ do
2: Guess $x_i \in \{1, 2, \ldots, n\}; \{\text{The } i\text{th city.}\}$a
3: end for
4: $x_{n+1} := x_1$;
5: {Verification stage:}
6: if x_1, x_2, \ldots, x_n are distinct and $\sum_{i=1}^{n} d_{x_i, x_{i+1}} \leq B$ then
7: “yes”;
8: else
9: “no”;
10: end if

aCan be made into a series of $\log_2 n$ binary choices for each x_i so that the next-state count (2) is a constant, independent of input size. Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.